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Introduction

Outlier definition and detection
I Let us consider Xn = (x1, . . . ,xn)′ a p-variate dataset.
I “An outlier is an observation which deviates so much from the

other observations as to arouse suspicious that is was generated
by a different mechanism.” (Hawkins, 1980).

I For one variable x and n observations x1, . . . , xn, a simple rule is
to look at the large values of:

|xi − x̄n|
σ̂n

, for i = 1, . . . ,n

I The generalization of this rule to the multivariate case is the
Mahalanobis distance of each observation to the mean:

MD2(xi) = ||COV(Xn)−1/2(xi − x̄n)||2

where x̄n denotes the empirical mean and COV(Xn) the empirical
covariance matrix.
Anne Ruiz-Gazen ICS 13 Juin 2018 3 / 28



Outlier detection using the Mahalanobis distance

Table of Contents

1 Introduction

2 Outlier detection using the Mahalanobis distance

3 Outlier detection using ICS

4 Conclusion and Perspectives

Anne Ruiz-Gazen ICS 13 Juin 2018 4 / 28



Outlier detection using the Mahalanobis distance Definition

The Mahalanobis distance (sample version)

I Classical measure for multivariate outlier detection:

MD2(xi) = ||COV(Xn)−1/2(xi − x̄n)||2

where x̄n denotes the empirical mean and COV(Xn) the empirical
covariance matrix.

I An observation xi is identified as an outlier if:

MD2(xi) ≥ cp,1−α

with cp,1−α the (1− α)-th quantile of a χ2
p distribution.

I Alternative: use a robust version based on the MCD1 estimators.

1Minimum Covariance Determinant: reweighted empirical mean and covariance
estimators of the MCD subset based on the h ≈ α ∗ n observations whose covariance
matrix has the smallest determinant.

Anne Ruiz-Gazen ICS 13 Juin 2018 5 / 28



Outlier detection using the Mahalanobis distance Definition

The Mahalanobis distance (sample version)
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Outlier detection using the Mahalanobis distance Definition

The Mahalanobis distance (functional version)
I Functional version: X is a p-variate random vector, FX its

cumulative distribution function and m(FX) an affine equivariant
location estimator.

I Let Pp be the set of all symmetric positive definite matrices of
order p.

I A scatter functional is defined as a matrix V(FX) ∈ Pp, uniquely
defined at FX, which is affine equivariant in the sense that:

V(FAX+γ) = AV(FX)A′,

for all p × p non-singular matrices A and all γ ∈ <p.
I The Mahalanobis distance:

d2(X) = (X−m(FX))′V(FX)−1(X−m(FX))

I d2(X) is affine invariant: d2(AX + γ) = d2(X)
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Outlier detection using the Mahalanobis distance Definition

Limitation of the Mahalanobis distance

I Classical measure for multivariate outlier detection:

d2(X) = (X− E(X))′COV(X)−1(X− E(X)).

I Let us consider the following model (M) which is a mixture of
(q + 1) Gaussian distributions:

X ∼ (1− ε)N (µ0,ΣW )︸ ︷︷ ︸
majority of the data

+

q∑
h=1

εhN (µh,ΣW )︸ ︷︷ ︸
clustered outliers

, where ε =

q∑
h=1

εh < 0.5

We have:
E(X) = (1− ε)µ0 +

∑q
h=1 εhµh and COV(X) = ΣW + ΣB, with

ΣB = (1− ε)(µ0 − µX)(µ0 − µX)′ +
∑q

h=1 εh(µh − µX)(µh − µX)′.
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Outlier detection using the Mahalanobis distance Definition

Limitation of the Mahalanobis distance
“Non-outlier” observations Xno ∼ N (µ0,ΣW ),

“Outlier” observations Xo,h ∼ N (µh,ΣW ), Xno ⊥ Xo,h, for h = 1, . . . ,q

Proposition
Assuming that q is fixed and p becomes large, the distribution of the
difference:

1
2
√

p

(
d2(Xo,h)− d2(Xno)− E

(
d2(Xo,h)− d2(Xno)

)) L−→
p→∞

N (0,1)

where the expectation E
(
d2(Xo,h)− d2(Xno)

)
does not depend on the

dimension p.

Thus, the probability of finding outliers decreases when the dimension
p increases.

A similar result is also derived for the robust case (when considering
ΣW instead of COV(X)).
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Outlier detection using the Mahalanobis distance Limitation in high dimension

20 obs ∼ Np(µ1,W) & 980 obs ∼ Np(0,W)
with µ1 = (6,0, . . . ,0)′, W = diag(1,4, . . . ,4), n = 1000,

2% of outliers and p = 6,25,50.
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Outlier detection using ICS ICS (functional version)

ICS Tyler et al., 2009

I Simultaneous diagonalization of two scatter matrices V1 and V2:

V−1
1 V2B′ = B′D

where the diagonal matrix D contains the eigenvalues ρ1, . . . , ρp

of V−1
1 V2 in decreasing order and B = (b1, . . . ,bp)′ contains the

corresponding eigenvectors as its rows such that: BV1B′ = Ip.
I New components:

Z = B(X−m1)

with m1 being a location estimator associated with V1.
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Outlier detection using ICS ICS (functional version)

ICS

I Many possibilities for V1 and V2.
I For example, V1 = COV(X) and V2 = COV4(X) with

COV4(X) =
1

p + 2
E
[
d2(X)(X− E(X))(X− E(X))′

]
.

I M-estimators, MCD estimators,. . .
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Outlier detection using ICS ICS (functional version)

ICS

I Focusing only on the first eigenvalue and the first eigenvector, it is
equivalent to maximizing the ratio:

K(b) =
b′V2b
b′V1b

where ρ1 is the maximal possible value of K(b) over b ∈ <p which
is achieved in the direction of the eigenvector b1. This ratio can be
seen as a generalized measure of kurtosis.

I ICS follows the same “philosophy” as PCA. However, it differs
from PCA which maximizes a variance criterion and which is only
orthogonally invariant.

I In a different (supervised) context where the groups are known,
one can use the between and within covariance matrices as V1
and V2 which leads to Discriminant Analysis.
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Outlier detection using ICS Property of the ICS components

Property of the components
Under the model (M):

X ∼ (1− ε)N (µ0,ΣW ) +
∑q

h=1 εhN (µh,ΣW ),

where ε =
∑q

h=1 εh < 0.5, µ1 − µ0, . . . ,µq − µ0 span some q-dimensional
hyperplane.

Theorem (Tyler et al., 2009)
Suppose that the roots ρ1, . . . , ρp consist of m distinct values, say
ρ(1), . . . , ρ(m), with ρ(k) having multiplicity pk for k = 1, . . . ,m and hence
p1 + · · ·+ pm = p.
There is at least one root ρ(k) with multiplicity greater than or equal to p − q.
If no root has multiplicity greater than p − q, then there is a root with
multiplicity p − q, say ρ(j), such that

span{Σ−1
W (µk − µ0)|k = 1, . . . ,q} = span{Bq}

where Bq = (b1, . . . ,bp1+···+pj−1 ,bp1+···+pj+1 , . . . ,bp).

⇒ Fisher’s Linear Discriminant subspace even though the groups are
unknown.
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Outlier detection using ICS Property of the ICS components

If V1 = COV(X) and V2 = COV4(X)

Mean-shift outlier model (q = 1)

X ∼ (1− ε) N (0p,Σ1) + ε N (µ,Σ1), with ε < 0.5 and µ 6= 0p a p-vector.

The eigenvalues of COV−1(X)COV4(X) are such that either:
(a) ρ1 > ρ2 = . . . = ρp if ε < (3−

√
3)/6 (≈ 21%),

(b) ρ1 = . . . = ρp−1 > ρp if ε > (3−
√

3)/6,
(c) ρ1 = ρ2 = . . . = ρp if ε = (3−

√
3)/6.

Moreover, if (a) (resp. (b)) holds then the eigenvector associated with ρ1
(resp. ρp) is proportional to Σ−1

1 µ.
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Outlier detection using ICS Property of the ICS components

Symmetric contamination of a Gaussian distribution
Proposition

X ∼ (1− ε) N (0p,Σ21) + ε
2 N (δe1,Σ22) + ε

2 N (−δe1,Σ22)

with Σ21 = diag(σ2
11, σ

2
12, . . . , σ

2
12), Σ22 = diag(σ2

21, σ
2
22, . . . , σ

2
22) and δ 6= 0.

The eigenvalues of COV−1(X)COV4(X) are such that either:
(a) ρ1 > ρ2 = . . . = ρp ,
(b) ρ1 = . . . = ρp−1 > ρp,
(c) ρ1 = ρ2 = . . . = ρp.

with ρ1 =
1

p + 2

(
3(1− ε)σ4

11 + ε(3σ4
21 + 6σ2

21δ
2 + δ4)

((1− ε)σ2
11 + ε(σ2

21 + δ2))2
+ p − 1

)

and ρ2 =
1

p + 2

(
3((1− ε)σ4

12 + εσ4
22)

((1− ε)σ2
12 + εσ2

22)
2
+ p − 1

)
.

Moreover, if (a) (resp. (b)) holds then the eigenvector associated with ρ1
(resp. ρp) is proportional to e1.

Corollary : with Σ21 = Σ22 = Ip, (a) holds if ε < 1/3.
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Outlier detection using ICS Property of the ICS components

Scale-shift outlier model (q ≤ p)

Proposition

X ∼ (1− ε)N (0p, Ip) + εN (0p,Σ5)

with ε < 0.5, Σ5 = diag(αIq , Ip−q), q < p and α > 1.

The eigenvalues of COV−1(X)COV4(X) are such that:

ρ1(FX) = · · · = ρq(FX) > ρq+1(FX) = · · · = ρp(FX)

Moreover, the eigenvectors associated with the q largest eigenvalues span
the subspace spanned by {e1, . . . ,eq}.

Remark: if q = p then all the eigenvalues are equal.
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Outlier detection using ICS Property of the ICS components

ICS (sample version)
I Simultaneous diagonalization of two scatter matrices V1,n and

V2,n:
V−1

1,nV2,nB′n = B′nDn

where the diagonal matrix Dn contains the eigenvalues ρ1, . . . , ρp of V−1
1,nV2,n in

decreasing order and Bn = (b1, . . . ,bp)
′ contains the corresponding

eigenvectors as its rows such that: BnV1,nB′n = Ip.

I The (affine) invariant coordinates are:

zi = Bn(xi −m1,n)

with m1,n being the location estimator associated with V1,n.

I For k selected ICS components, we define an ICS distance as:

ICSD2
V−1

1,nV2,n
(xi , k) = z′i,kzi,k

with zi,k = Bn,k (xi − m1,n) and Bn,k contains the first k rows of Bn.
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Outlier detection using ICS Property of the ICS components

Relationship with the MD2

For k selected ICS components, we define an ICS distance as:

ICSD2
V−1

1,nV2,n
(xi , k) = z′i,kzi,k

with zi,k = Bn,k (xi − m1,n) and Bn,k contains the first k rows of Bn.

Property

ICSD2
COV(Xn)−1COV4(Xn)

(xi ,p) = MD2(xi)

If the structure of outlyingness is contained on a subspace of
dimension q less than p, then ICS has an advantage over MD if we
select k = q components.
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Outlier detection using ICS Property of the ICS components

20 obs ∼ Np(µ1,W) & 980 obs ∼ Np(0p,W)
with µ1 = (6, 0, . . . , 0)′, W = diag(1, 4, . . . , 4), n = 1000, 2% of outliers and p = 6, 25, 50.
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Outlier detection using ICS Selection of the Invariant Coordinates

Selection of the Invariant Coordinates

As we look only for a small proportion of outliers, the outliers should be
found in the first components.

Approaches:
I Based on the analysis of the eigenvalues:

Visually, using a scree plot.
Using asymptotic distribution of the eigenvalues.
Using quasi inferential procedures (parallel analysis).

I Based on the analysis of the Invariant Components:
Using marginal normality tests.

In this context of particular sequential multiple testing, we apply the
Bonferroni correction on the significance level: αi = α/i for i = 1, . . . ,p
with α = 5%.
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Outlier detection using ICS Implementation

The ICSOutlier and ICSShiny R packages

Detection of a small proportion of outliers via ICS can be easily done
using our package ICSOutlier which is available on CRAN or with the
ICSShiny application.

There the user can:
I Choose the scatter matrices V1,n and V2,n.
I Choose the ICS components visually, using parallel analysis or

marginal normality testing.
I Explore the invariant components.
I Identify outliers based on a cut-off obtained from simulations.
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Outlier detection using ICS Simulations & Real Examples

Simulations & Real Examples

We conducted an extensive simulation study comparing
I MD and robust MD, and PCA based outlier detection methods with

ICS
I Concerning ICS, we evaluated:

- different scatter combinations.
- different ways to select the ICS components.

Conclusion: ICS and especially the scatter combination COV-COV4
works well and has interesting theoretical properties.
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Outlier detection using ICS Simulations & Real Examples

High Tech Parts Example I

I 902 high-tech parts
characterized by 88
numerical tests (available
in ICSOutlier).

I All parts have been sold
(considered flawless) but
afterwards two parts have
been returned due to
malfunctions⇒ two quality
defects.
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Outlier detection using ICS Simulations & Real Examples

High Tech Parts Example II
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Conclusion and Perspectives
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Conclusion and Perspectives

Conclusion

I Exhibit a limitation of the Mahalanobis distance when p is large
and when outliers lie on a subspace.

I Propose a methodology for outlier detection with ICS.
I Generalize ICS to semi-definite positive scatter matrices for data

not in general position.
I Perpectives: extend the theory and package to be able to handle

also large fractions of outliers (e.g. deriving results for mixtures
with three or more components), propose a sparse ICS.
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