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Résumé

Le tirage à plusieurs degrés est fréquemment utilisé quand on ne dispose pas d’une base
de sondage, ou que la population est dispersée géographiquement. Le tirage à plusieurs
degrés introduit une dépendance complexe dans la sélection des unités finales, ce qui
rend les propriétés des estimateurs plus difficiles à prouver. Nous considérons ici un
échantillonnage à plusieurs degrés avec tirage à probabilités inégales pour les unités pri-
maires, et un plan de sondage arbitraire pour les tirages réalisés aux degrés suivants. Nous
proposons une méthode de couplage entre le tirage réjectif et le tirage multinomial, afin
de relier le premier plan de sondage à un autre plan de sondage où les unités primaires
sont sélectionnées avec remise. Quand la fraction de sondage du 1er degré est faible, cette
méthode permet de prouver que les estimateurs de variance par Bootstrap sont consistants
pour des fonctions lisses de totaux.

Abstract

Multistage sampling is commonly used for household surveys when there exists no sam-
pling frame, or when the population is scattered over a wide area. Multistage sampling
usually introduces a complex dependence in the selection of the final units, which makes
asymptotic results quite difficult to prove. In this work, we consider multistage sampling
with unequal probability sampling at the first stage, and with an arbitrary sampling de-
sign for further stages. We introduce a new coupling method between rejective sampling
and multinomial sampling. When the first-stage sampling fraction is small, this method
is used to prove the consistency of with-replacement Bootstrap variance estimators for
smooth functions of totals.
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1 Introduction

Multistage sampling is widely used for household and health surveys when there exists
no sampling frame, or when the population is scattered over a wide area. Three or more
stages of sampling may be commonly used. For example, the third National Health and
Nutrition Survey (NHANES III) conducted in the United States involved four stages of
sampling, with the selection of counties as Primary Sampling Units (PSUs), of segments
as Secondary Sampling Units (SSUs) inside the selected counties, of households as Ter-
tiary Sampling Units (TSUs) inside the selected segments, and of individuals inside the
selected households (see Ezzati et al., 1992). A detailed treatment of multistage sampling
may be found in textbooks like Ardilly (2006), Cochran (1977), Särndal et al. (1992) or
Fuller (2009).

The use of bootstrap techniques in survey sampling has been widely studied in the lit-
erature. Most of them may be thought as particular cases of the weighted bootstrap
(Bertail and Combris, 1997; Antal and Tillé, 2011; Beaumont and Patak, 2012); see also
Shao and Tu (1995, chap. 6), Davison and Hinkley (1997, section 3.7), Lahiri (2003) and
Davison and Sardy (2007) for detailed reviews. Bootstrap for multistage sampling under
without-replacement sampling of PSUs has been considered for example in Rao and Wu
(1988), Rao, Wu and Yue (1992), Nigam and Rao (1996), Funaoka et al. (2006), Preston
(2009) and Lin et al. (2013), among others. Testing the validity of a bootstrap procedure
has primarily consisted in showing that it led to the correct variance estimator in the
linear case, and then in evaluating empirically the behavior of the method for complex
parameters through simulations.

In this paper, we consider the so-called with-replacement Bootstrap of PSUs (see Rao
and Wu, 1988). Extending the work in Chauvet (2014), We prove that this Bootstrap
method is suitable for multistage sampling with rejective sampling of PSUs (see Hajek,
1964) and a small first-stage sampling fraction, and yields consistent variance estimators
for smooth functions of means. Our framework is defined in Section 2. Multistage sam-
pling with multinomial sampling of PSUs is presented in Section 3, and the principles of
the with-replacement Bootstrap are briefly reminded in Section 4. Multistage sampling
with rejective sampling of PSUs is presented in Section 5, and we describe in Section 6 a
coupling procedure for a joint selection of a multinomial sample and of a rejective sample.
This procedure is used to prove that the with-replacement Bootstrap leads to consistent
variance estimators for smooth functions of means, by comparison with the multinomial
case, which is the purpose of Section 7. The properties of the Bootstrap variance estima-
tors for three parameters are evaluated in Section 8 through a small simulation study.

2 Framework

We consider a finite population U consisting of N sampling units that may be represented
by their labels, so that we may simply write U = {1, . . . , N}. The units are grouped inside
NI non-overlapping subpopulations u1, . . . , uNI

called primary sampling units (PSUs). We
are interested in estimating the population total

Y =
∑
k∈U

yk =
∑
ui∈UI

Yi (1)
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for some q-vector of interest y, where Yi =
∑

k∈ui yk is the sub-total of y on the PSU ui.
We are also interested in estimating some smooth function of the population total

θ = f(Y ) (2)

where f : Rq −→ R is a known function.

We note E(·) and V (·) for the expectation and the variance of some estimator. Also, we
note E{X}(·) and V{X}(·) for the expectation and variance conditionally on some random

variable X. Throughout the paper, we denote by Ŷi an unbiased estimator of Yi, and by
Vi = V (Ŷi) its variance-covariance matrix. Also, we denote by V̂i an unbiased estimator
of Vi.

In order to study the asymptotic properties of the sampling designs and estimators that
we treat below, we consider the asymptotic framework of Isaki and Fuller (1982). We
assume that the population U belongs to a nested sequence {Ut} of finite populations
with increasing sizes Nt, and that the population vector of values yUt = (y1t, . . . , yNt)

>

belongs to a sequence {yUt} of Nt-vectors. For simplicity, the index t will be suppressed
in what follows but all limiting processes will be taken as t→∞. We assume that:

H1: nI −→
t→∞
∞ and there exists some constant N̄ ≥ 1 such that

N

NI

−→
t→∞

N̄ .

In the population UI = {u1, . . . , uNI
} of PSUs, a first-stage sample SI is selected accord-

ing to some sampling design pI(·). For clarity of exposition, we consider non-stratified
sampling designs for pI(·), but the results may be easily extended to the case of stratified
first-stage sampling designs with a finite number of strata. If the PSU ui is selected in
SI , a second-stage sample Si is selected in ui by means of some sampling design pi(·|SI).
We assume invariance of the second-stage designs: that is, the second stage of sampling
is independent of SI and we may simply write pi(·|SI) = pi(·). Also, we assume that the
second-stage designs are independent from one PSU to another, conditionally on SI . This
implies that

Pr

( ⋃
ui∈SI

{Si = si}

∣∣∣∣∣SI
)

=
∏
ui∈SI

pi(si|SI)

=
∏
ui∈SI

pi(si) (3)

for any set of samples si ⊂ ui, i = 1, . . . , NI , where the second line in (3) follows from the
invariance assumption; see Särndal et al (1992, chapter 4) for further details. The second-
stage sampling designs pi(·) are left arbitrary. For example, they may involve censuses
inside some PSUs (which means cluster sampling), or additional stages of sampling.

3 Multinomial sampling of PSUs

We first consider the case when a first-stage sample SWR
I is selected in UI by means of

multinomial sampling (Tillé, 2006). That is, a sample SWR
I is obtained from nI indepen-

dent draws, some unit ui being selected with probability αIi at each draw. This will be
noted as

SWR
I ∼MULT (UI ;nI ;αI) with αI = (αI1, . . . , αINI

)> (4)
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and
∑

ui∈UI
αIi = 1. We denote by Wi the number of selections of the PSU ui in SWR

I .
The expected number of draws for the PSU ui is

E(Wi) = nIαIi.

Each time j = 1, . . . ,Wi that the PSU ui is selected in SWR
I , a second-stage sample S

[j]
i

is selected in ui.

The population total Y is unbiasedly estimated by the Hansen-Hurwitz (1942) (HH)-
estimator

ŶWR =
1

nI

nI∑
j=1

Ŷ
[j]
i(j)

αIi(j)
(5)

where we denote by i(j) the PSU selected at the j-th draw, and where Ŷ
[j]
i(j) stands for an

unbiased estimator of Yi(j) computed on S
[j]
i(j). The HH-estimator may be rewritten as

ŶWR = X̄ ≡ 1

nI

nI∑
j=1

Xj where Xj =
Ŷ

[j]
i(j)

αIi(j)
. (6)

Note that the Xj, j = 1, . . . , nI are independent and identically distributed random q-
vectors, with E(Xj) = Y .

The variance of the HH estimator is

V
(
ŶWR

)
= VPSU

(
ŶWR

)
+ VSSU

(
ŶWR

)
, (7)

where

VPSU

(
ŶWR

)
=

1

nI

∑
ui∈UI

αIi

(
Yi
αIi
− Y

)(
Yi
αIi
− Y

)>
(8)

is the variance due to the first stage of sampling, and

VSSU

(
ŶWR

)
=

1

nI

∑
ui∈UI

Vi
αIi

(9)

is the variance due to further stages. The variance due to the first-stage of sampling may
be rewritten as

VPSU

(
ŶWR

)
=

1

2nI

∑
ui 6=uj∈UI

αIiαIj

(
Yi
αIi
− Yj
αIj

)(
Yi
αIi
− Yj
αIj

)>
. (10)

An unbiased estimator for V
(
ŶWR

)
is

vWR

(
ŶWR

)
=
s2X
nI

with s2X =
1

nI − 1

nI∑
j=1

(Xj − X̄)(Xj − X̄)>. (11)
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The simple form of the variance estimator in (11) is primarily due to (6), where ŶWR

is written as a mean of independent and identically distributed random variables (see
also Särndal et al, 1992, p. 151). In particular, unbiased variance estimators V̂i inside
PSUs are not needed to compute this variance estimator. This appealing property led to
consider vWR(·) as a possible simplified variance estimator when the PSUs are selected
without replacement with a small sampling fraction at the first stage. In case of without-
replacement sampling of PSUs, it can be shown that vWR(·) succeeds in accounting for
the variance due to further stages of sampling, but is usually biased for the variance due
to the first-stage of sampling.

The parameter θ = f(Y ) is approximately unbiasedly estimated by the plug-in estimator

θ̂WR = f(X̄). (12)

An approximately unbiased variance estimator for θ̂WR may be obtained from (11) through
the linearization technique, by substituting the variable y with the estimated linearized
variable of the parameter θ (Deville, 1999; Goga, Deville and Ruiz-Gazen, 2009). In this
paper, we rather resort to Bootstrap for variance estimation.

4 With-replacement bootstrap for multinomial sam-

pling of PSUs

We consider the with-replacement Bootstrap of PSUs described for example in Rao and
Wu (1988). Using the notation introduced in equation (6), we note

(X1, . . . , XnI
)> (13)

the original sample of estimators under multinomial sampling of PSUs, whose mean X̄
corresponds to the HH-estimator. We define

(X∗1 , . . . , X
∗
m)> (14)

as a resample of estimators, obtained by sampling m times independently and with equal
probabilities in the original set of estimators (X1, . . . , XnI

)>. The resample mean is
denoted as

X̄∗ =
1

m

m∑
i=1

X∗i . (15)

This is the Bootstrap estimator for the population total. The Bootstrap estimator for the
parameter θ = f(Y ) is

θ̂∗WR = f(X̄∗). (16)

The resampling in the set (X1, . . . , XnI
)> is repeated B times independently. The boot-

strap variance estimator for Y is simply obtained by computing the dispersion of the
Bootstrap estimators for the B resamples, which leads to

vboot

(
ŶWR

)
=

1

B − 1

B∑
b=1

(
X̄b∗ − 1

B

B∑
c=1

X̄c∗

)(
X̄b∗ − 1

B

B∑
c=1

X̄c∗

)>
(17)
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with X̄b∗ the mean computed on the b-th resample. Using m = nI − 1 enables to match
the usual unbiased variance estimator in (11) when B → ∞. The bootstrap variance
estimator for θ = f(Y ) is also obtained by computing the dispersion of the Bootstrap
estimators, which leads to

vboot

(
θ̂WR

)
=

1

B − 1

B∑
b=1

(
θ̂b∗WR −

1

B

B∑
c=1

θ̂c∗WR

)2

(18)

with θ̂b∗WR the estimator computed on the b-th resample.

5 Rejective sampling of PSUs

We now consider the case when a first-stage sample SRI is selected in UI by means of
rejective sampling (Hajek, 1964) with an inclusion probability πIi for the PSU ui. This
will be noted as

SRI ∼ REJ(UI ;nI ; πI) with πI = (πI1, . . . , πINI
)> (19)

and
∑

ui∈UI
πIi = nI . If the PSU ui is selected in SRI , a second-stage sample Si is selected

in ui.

The population total Y is unbiasedly estimated by the Narain-Horvitz-Thompson (NHT)-
estimator

ŶR =
∑
ui∈SR

I

Ŷi
πIi

, (20)

where Ŷi stands for an unbiased estimator of Yi computed on Si.

The sample SRI can be obtained through a draw by draw procedure (see Chen, Dempster
and Liu, 1994), which enables to rewrite the NHT-estimator as

ŶR = Z̄ ≡ 1

nI

nI∑
j=1

Zj where Zj =
Ŷi(j)

n−1I πIi(j)
, (21)

with i(j) the PSU selected at the j-th draw. Note that the draws are not performed
independently and that the Zj, j = 1, . . . , nI are thus not i.i.d., unlike multinomial
sampling. The parameter θ = f(Y ) is approximately unbiasedly estimated by the plug-in
estimator

θ̂R = f(Z̄). (22)

The variance of the NHT- estimator is

V
(
ŶR

)
= VPSU

(
ŶR

)
+ VSSU

(
ŶR

)
. (23)

The variance due to the first stage of sampling is

VPSU

(
ŶR

)
=

∑
ui,uj∈UI

∆Iij

(
Yi
πIi

)(
Yj
πIj

)>
(24)

6



where ∆Iij = πIij − πIiπIj, and where πIij is the probability that the PSUs ui and uj are
selected jointly in SRI . The variance due to further stages of sampling is

VSSU

(
ŶR

)
=

∑
ui∈UI

Vi
πIi

, (25)

and is identical to the variance due to further stages of sampling obtained for multinomial
sampling with drawing probabilities αIi = πIi/nI .

An unbiased estimator for V
(
ŶR

)
is

V̂
(
ŶR

)
= V̂1

(
ŶR

)
+ V̂2

(
ŶR

)
, (26)

where

V̂1

(
ŶR

)
=

∑
ui,uj∈SR

I

∆Iij

πIij

(
Ŷi
πIi

)(
Ŷj
πIj

)>
, (27)

V̂2

(
ŶR

)
=

∑
ui∈SR

I

V̂i
πIi

. (28)

It is well-known that V̂
(
ŶR

)
is not a term by term unbiased estimator for (23), see for

example Särndal, Swensson and Wretman (1992). Also, unbiased variance estimators V̂i
inside PSUs are needed, which may be cumbersome it the sampling strategy inside PSUs
is somewhat complex. It is therefore desirable to exhibit simplified variance estimators
with limited bias.

Making use of Theorem 6.1 in Hajek (1964), we note that the variance of ŶR may be
approximately written as

VPSU

(
ŶR

)
=

1

2dI

∑
ui 6=uj∈UI

πIi(1− πIi)πIj(1− πIj)
(
Yi
πIi
− Yj
πIj

)(
Yi
πIi
− Yj
πIj

)>
[1 + o(1)]

(29)

with dI =
∑

ui∈UI
πIi(1− πIi). As stated in Proposition 1 below, it follows from equation

(10) that the variance of the NHT-estimator under rejective sampling of PSUs is close to
that obtained for the HH-estimator under multinomial sampling of PSUs with drawing
probabilities αIi = πIi/nI , if the inclusion probabilities πIi are small.

Proposition 1. We take αIi = πIi/nI . Suppose that H1 holds. Suppose that:

H2: There exists some constants λ1 ≥ λ0 > 0 such that λ0 ≤
∥∥∥N−2I nIVPSU

(
ŶWR

)∥∥∥ ≤ λ1

where ‖ · ‖ is the spectral norm.

H3: There exists some constants C0 and C1 such that for any ui ∈ UI nI

NI
≤ πIi ≤ C1

nI

NI
.

If in addition:
nI
NI

→
t→∞

0, we have∥∥∥∥{V (ŶWR

)}−1 {
V
(
ŶR

)
− V

(
ŶWR

)}∥∥∥∥ −→t→∞ 0 (30)
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6 A coupling procedure between multinomial sam-

pling of PSUs and rejective sampling of PSUs

Rejective sampling can be performed as conditional multinomial sampling (Hajek, 1981,
chapter 7). A sample SWR

I is first selected by means of multinomial sampling with draw-
ing probabilities αI . This sample is kept if all the selected units are distinct, otherwise
it is discarded and a new sample is selected. This sampling process is repeated until we
obtain a sample with distinct units, which is the final sample.

In what follows, we suppose that the drawing probabilities αI are chosen so that the final
inclusion probabilities πI are matched; see Hajek (1981), Chen, Dempster and Liu (1994)
and Deville (2000) for the computation of αI . A coupling procedure leading to the joint
selection of a multinomial sample with drawing probabilities αI and of a rejective sample
with inclusion probabilities πI is proposed in Algorithm 1.

Algorithm 1 A coupling procedure for multinomial sampling of PSUs and rejective
sampling of PSUs

1. Draw the sample SWR
I ∼MULT (UI ;nI ;αI). Each time j = 1, . . . ,Wi that the PSU

ui is selected in SWR
I , a second-stage sample S

[j]
i is selected in ui.

2. If all the PSUs inside SWR
I are distinct, take SRI = SWR

I , and for any ui ∈ SRI take

Si = S
[1]
i .

3. Otherwise, select a new sample ∼MULT (UI ;nI ;αI) until all the selected units are
distinct. The final sample is SRI . For any ui ∈ SRI , select a second-stage sample Si.

Proposition 2. Assume that the samples SWR
I and SRI are selected according to Algorithm

1. Assume that assumptions (H1)-(H3) hold. Suppose that:

H4: f is homogeneous of degree α, and is a differentiable function on Rq with bounded
partial derivatives and with f ′(µy) 6= 0.

If in addition:
nI√
NI

→
t→∞

0, then:

E(‖ŶWR − ŶR‖2) = o(N2
I n
−1
I ), (31)

E(θ̂WR − θ̂R)2 = o(N2α
I n−1I ). (32)

7 With-replacement bootstrap for rejective sampling

of PSUs

We still consider the with-replacement Bootstrap of PSUs described in Section (4). Recall
that

(Z1, . . . , ZnI
)> (33)
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is the original sample of estimators under rejective sampling of PSUs, whose mean X̄
corresponds to the NHT-estimator. The plug-in estimator of the parameter θ = f(Y ) is

θ̂R = f(Z̄). (34)

A resample of estimators

(Z∗1 , . . . , Z
∗
m)> (35)

is obtained by sampling m times independently and with equal probabilities in the original
set of estimators (Z1, . . . , ZnI

)>. The resample mean is denoted as

Z̄∗ =
1

m

m∑
i=1

Z∗i . (36)

This is the Bootstrap estimator for the population total. The Bootstrap estimator for the
parameter θ = f(Y ) is

θ̂∗R = f(Z̄∗). (37)

The resampling in the set (X1, . . . , XnI
)> is repeated B times independently. The boot-

strap variance estimator for Y is obtained by computing the dispersion of the Bootstrap
estimators for the B resamples, which leads to

vboot

(
ŶR

)
=

1

B − 1

B∑
b=1

(
Z̄b∗ − 1

B

B∑
c=1

Z̄c∗

)(
Z̄b∗ − 1

B

B∑
c=1

Z̄c∗

)>
(38)

with Z̄b∗ the mean computed on the b-th resample. The bootstrap variance estimator for
θ = f(Y ) is also obtained by computing the dispersion of the Bootstrap estimators, which
leads to

vboot

(
θ̂R

)
=

1

B − 1

B∑
b=1

(
θ̂b∗R −

1

B

B∑
c=1

θ̂c∗R

)2

(39)

with θ̂b∗R the estimator computed on the b-th resample.

Proposition 3. Assume that the samples SWR
I and SRI are selected according to Algorithm

1. Assume that assumptions (H1)-(H4) hold.

If in addition:
nI√
NI

→
t→∞

0 and m −→
t→∞
∞, then:

E(‖Z̄∗ − X̄∗‖2) = o(N2
Im
−1) + o(N2

I n
−1
I ), (40)

E(θ̂∗ − θ̂∗WR)2 = o(N2α
I m−1) + o(N2α

I n−1I ). (41)

Proposition 3 implies that

V{Z1,...,ZnI
}(ŶR)

V{X1,...,XnI
}(ŶWR)

−→Pr 1. (42)

Therefore, the consistency of the Bootstrap variance estimator for rejective sampling of
PSUs follows from that of the Bootstrap variance estimator for multinomial sampling of
PSUs.
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8 A simulation study

We conducted a limited simulation study to investigate on the performance of the Boot-
strap variance estimator. We generated 1 finite population with NI = 2, 000 PSUs. The
number of SSUs inside PSUs was generated so that the average number of SSUs per PSU
was approximately equal to N̄ = 40, and so that the coefficient of variation for the sizes
Ni of PSUs was equal to 0.06. For any PSU ui, we generated:

λi = λ+ σ vi (43)

with λ = 20 and σ = 2, and the vi’s were generated according to a normal distribution
with mean 0 and variance 1. For each SSU k ∈ ui, we generated three couples of values
(y1,k, y2,k), (y3,k, y4,k) and (y5,k, y6,k) according to the model

y2h−1,k = λi + {ρ−1h (1− ρh)}0.5σ (α εk + ηk), (44)

y2h,k = λi + {ρ−1h (1− ρh)}0.5σ (α εk + νk), (45)

for h = 1, . . . , 3, where the values εk, ηk and νk were generated according to a normal
distribution with mean 0 and variance 1. The parameter ρh was chosen so that the intra-
cluster correlation coefficient was approximately equal to 0.1 for both variables y1 and y2,
0.2 for both variables y3 and y4, and 0.3 for both variables y5 and y6. Also, the param-
eter α was chosen so that the coefficient of correlation between variables y2h−1 and y2h,
h = 1, . . . , 3, was approximately equal to 0.60.

We selected B = 1, 000 samples in the population by means of a two-stage self-weighting
sampling design. The sample SI of PSUs was selected by means of rejective sampling
of size nI = 20, 50, 100, 200 or 500 with probabilities proportional to the size Ni of the
PSUs. Inside each ui ∈ SI , the sample Si of SSUs was selected by means of systematic
sampling of size n0 = 5 or 20. Note that, due to the systematic sampling at the second
stage, the variance may not be unbiasedly estimated. Our objective is to use the with-
replacement Bootstrap variance estimator in (39) for the NHT estimator of the total of
the variables y1, y3 and y5. Also, our objective is to use the with-replacement Bootstrap
variance estimator in (39) for the substitution estimator of the ratios

Rh =
µy,2h−1
µy,2h

(46)

with µy,2h−1 = N−1
∑

k∈U y2h−1,k and µy,2h = N−1
∑

k∈U y2h,k, and for the substitution
estimator of the coefficient of correlations

rh =

∑
k∈U(y2h−1,k − µy,2h−1)(y2h,k − µy,2h)√∑

k∈U(y2h−1,k − µy,2h−1)2
√∑

k∈U(y2h,k − µy,2h)2
, (47)

for h = 1, . . . , 3. We used B = 1, 000 Bootstrap replications and m = nI − 1 in the
simulation study. The true variance was approximated from a separate simulation run of
C = 20, 000 samples.

As a measure of bias of a point estimator θ̂ of a parameter θ, we used the Monte Carlo
percent relative bias (RB) given by

RBMC(θ̂) = 100×
B−1

∑B
b=1 θ̂(b) − θ
θ
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where θ̂(b) gives the value of the estimator for the bth sample. As a measure of variance

of an estimator θ̂ we used the Monte Carlo percent relative stability (RS) given by

RSMC(θ̂) = 100×

√
B−1

∑B
b=1(θ̂(b) − θ)2

θ
.

Using the with-replacement bootstrap of PSUs, we assess the coverage of confidence in-
tervals obtained by means of the percentile method. We used a nominal one-tailed error
rate of 2.5 % in each tail.

The results obtained for the Bootstrap variance estimator are given in Tables 1 and 2.
When the first-stage sampling fraction is small (less than 5 %), the bias of the Bootstrap
variance estimator is small for all parameters (less than 6 %), and the coverage rates are
approximately respected. When the first-stage sampling fraction is moderate (fI = 10
%), the Bootstrap variance estimator is weakly biased for the ratio and the coefficient
of correlation; as for the total, the bias of the Bootstrap variance estimator is small if
the variance due to the second stage is appreciable (n0 = 5), but can be as high as 10
% otherwise. When the first-stage sampling fraction is larger (fI = 25 %), the variance
estimators are positively biased in all cases. The bias tends to increase when the intra-
cluster correlation coefficient increases, that is, when the variance due to the first-stage
of sampling increases. Again, the bias is larger with n0 = 20, that is, when the variance
due to the second stage is small as compared to the variance due to the first-stage of
sampling. As could be expected, the confidence intervals are too conservative when the
biases are larger.
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