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Résumé

Linear Vector AutoRegressive (VAR) models where the innovations could be
unconditionally heteroscedastic are considered. In this framework we propose Or-
dinary Least Squares (OLS), Generalized Least Squares (GLS) and Adaptive Least
Squares (ALS) procedures. The GLS estimator requires the knowledge of the time-
varying variance structure while in the ALS approach the unknown variance is
estimated by kernel smoothing with the outer product of the OLS residuals vectors.
Different bandwidths for the different cells of the time-varying variance matrix are
allowed. We derive the asymptotic distribution of the proposed estimators for the
VAR coefficients and compare their properties. The ALS estimator is shown to be
asymptotically equivalent to the infeasible GLS estimator. This asymptotic equi-
valence is obtained uniformly with respect to the bandwidth(s) and hence justifies
data-driven bandwidth rules. Using these results we investigate the portmanteau
tests when the innovations have time-varying variance and propose new corrected
versions. The theoretical results are illustrated using a U.S. macro-economic data
set.

Keywords : Vector Autoregressive Model, Kernel smoothing, Portmanteau
tests

Introduction

In the recent years the study of linear time series models in the context of uncondi-
tionally heteroscedastic innovations has become of increased interest. This interest may
be explained by the strong empirical evidence of non-constant unconditional volatility
in macro-economic and financial data. For instance Sensier and Van Dijk (2004) found
that approximately 80% among 214 US macro-economic data exhibit a volatility break.
Stărică (2003) hypothesized that the returns of the Standard and Poors 500 stock market
index have a non constant unconditional volatility. These findings stimulated an interest
on the effects of non-stationary volatility in time series analysis. Reference can be made
to Cavaliere, Rahbek and Taylor (2010) and Kim and Park (2010) who investigated the
statistical analysis of cointegrated systems with non constant volatility.
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In this paper we study the inference in linear vector autoregressive (VAR) models with
volatility changes and possibly serially dependent innovations. Three methods for estima-
ting the VAR coefficients are investigated : OLS, infeasible Generalized Least Squares
(GLS) based on the knowledge of the time-varying volatility structure, and Adaptive
Least Squares (ALS) which is defined like the GLS but using a kernel estimate of the
volatility structure. The kernel smoothing could be used with a single bandwidth for the
whole volatility matrix or with different bandwidths for different cells. In some sense, we
extend the approach of Phillips and Xu (2005) and Xu and Phillips (2008) to the VAR
framework. In particular, we see that in the multivariate case the asymptotic distribution
of the GLS and ALS estimators is no longer free from the time-varying volatility struc-
ture. Moreover, our asymptotic results are uniform with respect to the bandwidth in a
given range. This opens the door to data-driven choices of the smoothing parameter, for
instance by cross-validation. Such uniformity results seems new even for the univariate
case. As an application of our estimation results we investigate the checking of goodness-
of-fit of the autoregressive order of VAR models with non stationary volatility. On one
hand, we show that in such cases the use of standard procedures for testing the adequacy
of the autoregressive order can be quite misleading. On the other hand, valid portman-
teau tests based on OLS and ALS residual autocovariances are proposed for testing the
goodness-of-fit tests of non-stationary but stable VAR processes.

The structure of the paper is as follows. Section 1 outlines the heteroscedastic VAR
model, introduces the assumptions and the definitions of the OLS and GLS estimators.
Section 2 contains the results on the asymptotic behavior of the OLS and the infeasible
Generalized Least Squares estimators. The ALS estimator based on kernel smoothing of
OLS residuals is proposed in Section 3 as a feasible asymptotically equivalent version of
GLS estimator. The asymptotic equivalence between ALS and GLS estimators is proved
uniformly in the bandwidths involved in volatility estimation. The asymptotic normality
of the OLS, GLS and ALS residual autocovariances and autocorrelations is established in
section 4. We highlight the unreliability of the chi-square type critical values for standard
portmanteau statistics and we derive their correct critical values in our framework. Since
the GLS residual autocovariances and autocorrelations are infeasible, we investigate the
relationship between the GLS and ALS residual autocovariances and autocorrelations
and we show that they are asymptotically equivalent. This result is used to introduce
portmanteau tests based on the ALS residuals. The mathematical proofs of the results
stated in the paper are available in Patilea and Räıssi (2010, 2011). As an application
of our theoretical findings we specify the autoregressive dynamics of a bivariate system
of U.S. economic variables in section 7 : the U.S. balance on services and balance on
merchandise trade data.

The following notations will be used throughout in the paper. We denote by A ⊗ B
the Kronecker product of two matrices A and B, and A⊗A by A⊗2. The vector obtained
by stacking the columns of A is denoted vec(A). The symbol ⇒ denotes the convergence

in distribution and we denote by
P−→ the convergence in probability. We denote by [u]

the integer part of a real number u. The determinant of a square matrix A is denoted by
detA.
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1 The model and least squares estimation of the pa-

rameters

Let us consider the observations X−p+1, . . . , X0, X1, . . . , XT generated by the following
VAR model

Xt = A1Xt−1 + · · ·+ ApXt−p + ut (1)

ut = Htϵt,

where the Xt’s are d-dimensional vectors. The stability condition on the matrices Ai,
detA(z) ̸= 0 for all |z| ≤ 1 with A(z)= Id −

∑p
i=1Aiz

i and Id denotes the d × d identity
matrix, is assumed to be hold. For a random variable x we define ∥ x ∥r= (E ∥ x ∥r)1/r,
where ∥ x ∥ denotes the Euclidean norm. We also define Ft as the σ-field generated by
{ϵs : s ≤ t}. The following assumption on theHt’s and the process (ϵt) gives the framework
of our paper.

Assumption A1 : (i) The d×d matrices Ht are invertible and satisfy Ht = G(t/T ),
where the components of the matrix G(r) := {gkl(r)} are measurable deterministic func-
tions on the interval (0, 1], such that supr∈(0,1] |gkl(r)| < ∞, and each gkl satisfies a Lip-
schitz condition piecewise on a finite number of some sub-intervals that partition (0, 1].
The matrix Σ(r) = G(r)G(r)′ is assumed positive definite for all r.
(ii) The process (ϵt) is α-mixing and such that E(ϵt | Ft−1) = 0, E(ϵtϵ

′
t | Ft−1) = Id and

the components ϵkt of the process (ϵt) satisfy supt ∥ ϵkt ∥4µ< ∞ for some µ > 1 and all
k ∈ {1, . . . , d}.

The assumption A1 generalizes the assumption of Xu and Phillips (2008) to the mul-
tivariate case. From the assumptions E(ϵt | Ft−1) = 0 and E(ϵtϵ

′
t | Ft−1) = Id, the

innovations are possibly serially dependent at the level of the third or higher order mo-
ments. However since G(r) is deterministic, we do not allow the error process to follow
a multivariate GARCH model. Cavaliere, Rahbek and Taylor (2010) considered similar
volatility structure to ours. Their assumption is slightly different from A1 in the sense
that they do not require a Lipschitz condition and allow for a countable number of jumps.
Boswijk and Zu (2007) allow the matrix Ht to be possibly stochastic, but requires the
volatility process to be continuous with other additional assumptions, which in particular
excludes important cases like abrupt shifts.

If we suppose that the volatility matrix Ht is constant, we retrieve the standard ho-
moscedastic case. However the standard assumption on the errors is often considered to
be too restrictive for macroeconomic or financial applications. Indeed many applied stu-
dies pointed out that such data may display unconditional non-stationary volatility (see
e.g. Ramey and Vine (2006)). Stărică and Granger (2005) found that when large samples
of stock returns are considered, taking into account shifts for the unconditional volatility
instead of assuming a stationary model as a GARCH(1,1) improve the volatility forecasts.

Let us denote by θ0 = (vec (A1)
′, . . . , vec (Ap)

′)′ ∈ Rpd2 the vector of the true parame-
ters. The equation (1) becomes

Xt = (X̃ ′
t−1 ⊗ Id)θ0 + ut

ut = Htϵt,
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where X̃t−1 = (X ′
t−1, . . . , X

′
t−p)

′. Using this expression we first define the OLS estimator

θ̂OLS = Σ̂−1

X̃
vec

(
Σ̂X

)
,

where

Σ̂X̃ = T−1

T∑
t=1

X̃t−1X̃
′
t−1 ⊗ Id and Σ̂X = T−1

T∑
t=1

XtX̃
′
t−1.

Next, let us define the unconditional variance Σt := HtH
′
t and the Generalized Least

Squares (GLS) estimator that takes into account a time-varying Σt, that is

θ̂GLS = Σ̂−1

X̃
vec

(
Σ̂X

)
, (2)

with

Σ̂X̃ = T−1

T∑
t=1

X̃t−1X̃
′
t−1 ⊗ Σ−1

t and Σ̂X = T−1

T∑
t=1

Σ−1
t XtX̃

′
t−1.

Note that since Ht is assumed invertible, Σt is positive definite for all t. If we suppose that
the volatility matrix Σt is constant in time, it is easy to see that θ̂GLS = θ̂OLS. However
the GLS estimator is in general infeasible since the true volatility matrix appears in
the expression (2). In the next section we compare the efficiency of the OLS and GLS
estimators.

2 Asymptotic behaviour of the estimators

In order to state the first result of the paper, let us introduce the matrix

∆ =


A1 . . . Ap−1 Ap

Id 0 . . . 0
. . . . . .

...
0 Id 0


of dimension pd × pd and ep(1) the vector of dimension p such that the first component
is equal to one and zero elsewhere. Note that if ũt = (u′t, 0 . . . , 0)

′, X̃t = ∆X̃t−1 + ũt. The
following proposition gives the asymptotic behavior of the OLS and GLS estimators. For
the sake of brevity we only investigate the asymptotic normality, the consistency is in
some sense an easier matter and is hence omitted.

Proposition 1. If Assumption A1 holds true, then :

1.
T

1
2 (θ̂GLS − θ0) ⇒ N (0,Λ−1

1 ), (3)

where

Λ1 =

∫ 1

0

∞∑
i=0

{
∆i(ep(1)ep(1)

′ ⊗ Σ(r))∆i′
}
⊗ Σ(r)−1dr

is positive definite ;
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2.
T

1
2 (θ̂OLS − θ0) ⇒ N (0,Λ−1

3 Λ2Λ
−1
3 ), (4)

where

Λ2 =

∫ 1

0

∞∑
i=0

{
∆i(ep(1)ep(1)

′ ⊗ Σ(r))∆i′
}
⊗ Σ(r)dr

and

Λ3 =

∫ 1

0

∞∑
i=0

{
∆i(ep(1)ep(1)

′ ⊗ Σ(r))∆i′
}
⊗ Id dr

are positive definite ;

3. The asymptotic variance of θ̂GLS is smaller than the asymptotic variance of θ̂OLS,
that is the matrix Λ−1

3 Λ2Λ
−1
3 − Λ−1

1 is positive semidefinite.

If we suppose that the error process is homoscedastic, that is Σt = Σu for all t, and
since we assumed E(ϵtϵ

′
t | Ft−1) = Id, we obtain

Λ1 = E
[
X̃tX̃

′
t

]
⊗ Σ−1

u , Λ2 = E
[
X̃tX̃

′
t

]
⊗ Σu and Λ3 = E

[
X̃tX̃

′
t

]
⊗ Id,

so that we retrieve the standard result of the iid case (see e.g. Lütkepohl (2005, p 74))

Λ−1
1 = Λ−1

3 Λ2Λ
−1
3 = {E[X̃tX̃

′
t]}−1 ⊗ Σu,

although here the error process could present some dependence at the level of third or
higher order moments. Note that in the homoscedastic case the OLS and ALS estimator
have the same efficiency.

In the case where Σ(r) = σ2(r)Id with σ2(·) a real-valued function one obtains the
following simplified formulae for Λk, k = 1, 2, 3 :

Λ1 =
∞∑
i=0

{
ψ̃i(1p×p ⊗ Id)ψ̃i

}
⊗ Id, (5)

and

Λ2 =

∫ 1

0

Σ(r)2drΛ1, Λ3 =

∫ 1

0

Σ(r)drΛ1.

In the case d = 1 these simplified formulae coincide with the equations (10) and (5) in Xu
and Phillips (2008). Thereby a nice feature of the GLS estimator in the univariate case
and in the multivariate case where Σ(r) = σ2(r)Id is that the covariance matrix of the
asymptotic distribution does not depend on the volatility function Σ(r). Nevertheless an
example provided in the extended version of the paper shows that (5) does not hold in
the general multivariate framework and the asymptotic covariance matrix in (3) depends
on the volatility function Σ(r).

It appears that the GLS estimator is more efficient than the OLS estimator in general
when the matrix Σt is time-varying. Nevertheless the assumption of known volatility struc-
ture needed to construct the GLS estimator could be unrealistic in practice. Moreover, the
asymptotic distribution of the GLS estimator depends on the unknown volatility. In the
OLS estimation approach only the asymptotic distribution of the coefficients estimator de-
pends on the unknown volatility. In addition, we can provide simple consistent estimators
of Λ2 and Λ3, which could be further used for instance to build confidence intervals for the
OLS estimators. For the purpose of estimation of Λ2 and Λ3 let ût := Xt−(X̃ ′

t−1⊗Id)θ̂OLS

denote the OLS residuals.
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Proposition 2. Under Assumption A1 we have

Λ̂2 := T−1

T∑
t=1

X̃t−1X̃
′
t−1 ⊗ ûtû

′
t = Λ2 + op(1).

Λ̂3 := Σ̂X̃ = Λ3 + op(1),

3 Adaptive estimation

In the previous section we pointed out that the GLS estimator is generally infeasible
in applications. Therefore we consider a feasible weighted estimator obtained using non-
parametric estimation of the volatility function. Our approach generalizes the work of
Xu and Phillips (2008) to the multivariate case. Let us denote by A ⊙ B the Hadamard
(entrywise) product of two matrices of same dimension A and B. Define the symmetric
matrix

Σ̌0
t =

T∑
i=1

wti ⊙ ûiû
′
i,

where, as before the ûi’s are the OLS residuals and the kl−element, k ≤ l, of the d × d
matrix of weights wti is given by

wti(bkl) =

(
T∑
i=1

Kti(bkl)

)−1

Kti(bkl),

with bkl the bandwidth and

Kti(bkl) =

{
K( t−i

T bkl
) if t ̸= i,

0 if t = i.

The kernel function K(z) is bounded nonnegative and such that
∫∞
−∞K(z)dz = 1. For

all 1 ≤ k ≤ l ≤ d the bandwidth bkl belongs to a range BT = [cminbT , cmaxbT ] with
cmin, cmax > 0 some constants and bT ↓ 0 at a suitable rate that will be specified below.

When using the same bandwidth bkl ∈ BT for all the cells of Σ̌0
t , since ûi, i = 1, ..., T

are almost sure linear independent each other, Σ̌0
t is almost sure positive definite provided

T is sufficiently large. A similar estimator is considered by Boswijk and Zu (2007). When
using several bandwidths bkl it is no longer clear that the symmetric matrix Σ̌0

t is positive
definite. Then we propose to use a regularization of Σ̌0

t , that is to replace it by the positive
definite matrix

Σ̌t =
{(

Σ̌0
t

)2
+ νT Id

}1/2

where νT > 0, T ≥ 1, is a sequence of real numbers decreasing to zero at a suitable rate
that will be specified below. Our simulation experience reported in Patilea and Räıssi
(2010, 2011) indicates that in applications with moderate and large samples νT could be
even set equal to 0.

In practice the bandwidths bkl can be chosen by minimization of a cross-validation
criterion like

T∑
t=1

∥ Σ̌t − ûtû
′
t ∥2,
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with respect to all bkl ∈ BT , 1 ≤ k ≤ l ≤ d, where ∥ · ∥ is some norm for a square
matrix, for instance the Frobenius norm that is the square root of the sum of the squares
of matrix elements. Our theoretical results below are obtained uniformly with respect to
the bandwidths bkl ∈ BT and this brings a justification for the common cross-validation
bandwidth selection approach in the framework we consider. To our best knowledge, this
justification is new and hence completes previous procedures of Xu and Phillips (2008)
and Boswijk and Zu (2007).

Let us now introduce the following adaptive least squares (ALS) estimator

θ̂ALS = Σ̌−1

X̃
vec

(
Σ̌X

)
,

with

Σ̌X̃ = T−1

T∑
t=1

X̃t−1X̃
′
t−1 ⊗ Σ̌−1

t , and Σ̌X = T−1

T∑
t=1

Σ̌−1
t XtX̃

′
t−1.

Assumption A1’ : Suppose that all the conditions in Assumption A1(i) hold true.
In addition :

(i) infr∈(0,1] λmin(Σ(r)) > 0 where λmin(Γ) denotes the smallest eigenvalue of the sym-
metric matrix Γ.

(ii) supt ∥ϵkt∥8 <∞ for all k ∈ {1, ..., d}.

Assumption A2 : (i) The kernel K(·) is a bounded density function defined on
the real line such that K(·) is nondecreasing on (−∞, 0] and decreasing on [0,∞) and∫
R
v2K(v)dv <∞. The functionK(·) is differentiable except a finite number of points and

the derivative K ′(·) is an integrable function. Moreover, the Fourier Transform F [K](·)
of K(·) satisfies

∫
R
|sF [K](s)| ds <∞.

(ii) The bandwidths bkl, 1 ≤ k ≤ l ≤ d, are taken in the range BT = [cminbT , cmaxbT ]
with 0 < cmin < cmax <∞ and bT + 1/Tb2+γ

T → 0 as T → ∞, for some γ > 0.

Assumption A1’ and A2(ii) are natural extensions to the multivariate framework
of the assumptions used in Theorem 2 of Xu and Phillips (2008). The conditions on the
kernel function are convenient assumptions satisfied by almost all commonly used kernels.
These conditions allow us for simpler technical arguments when investigating the rates
of convergence uniformly with respect to the bandwidths. The condition on the sequence
bT , T ≥ 1, is slightly more restrictive than the one imposed by Xu and Phillips (2008) in
the univariate case, that is bT +1/Tb2T → 0, and this is the price we pay for obtaining the
results uniformly in the bandwidths in a range BT .

In the sequel, we say that a sequence of random matrices AT , T ≥ 1 is op(1) uniformly

with respect to (w.r.t.) bkl ∈ BT as T → ∞ if sup1≤k≤l≤d supbkl∈BT
∥vec (AT ) ∥

P−→ 0. The
following proposition gives the asymptotic behavior of the adaptive estimators uniformly
w.r.t the bandwidths.

Proposition 3. Under A1’ and A2 and provided Tν2T → 0, uniformly w.r.t. bkl ∈ BT as
T → ∞

Λ̌1 := Σ̌X̃ = Λ1 + op(1), (6)

and √
T (θ̂ALS − θ̂GLS) = op(1).
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Proposition 3 shows that the ALS and GLS estimators have the same asymptotic
behavior, that is the ALS estimator is consistent in probability and

√
T−asymptotically

normal as soon as the GLS estimator has such properties. The results remains true even
if the bandwidths bkl ∈ BT are data dependent. It is clear from our results that using the
adaptive estimators of the autoregressive parameters instead of the OLS estimators lead
to a gain of efficiency. Consequently it is shown in Patilea and Räıssi (2010) that the test
for zero restrictions in the autoregressive parameters based on the ALS estimators are
more powerful than the test based on the OLS estimators. Simulation results in Patilea
and Räıssi (2010) show that the gain of efficiency of the ALS estimator over the OLS
estimator can be substantial.

4 Asymptotic behavior of the residual

autocovariances

First note that the adaptive approach for checking the adequacy of a VAR(p) model
requires the estimation of the innovations ϵt, and hence we will need an identification
condition for G(r) and the estimate of the matrix Ht. In the sequel we assume that the
Ht’s are positive definite matrices, so that G(r) is identified as the square root of Σ(r) and
this is a convenient choice for the proofs. Nevertheless one can notice from the following
that our results could be stated using alternative conditions, like for instance Ht is a lower
triangular matrix with diagonal components restricted to be positive. Let us define the
GLS-based estimates of ϵt

ϵ̂t = H−1
t Xt −H−1

t (X̃ ′
t−1 ⊗ Id)θ̂GLS,

and the residual autocovariances

Γ̂OLS(h) = T−1

T∑
t=h+1

ûtû
′
t−h and Γ̂GLS(h) = T−1

T∑
t=h+1

ϵ̂tϵ̂
′
t−h,

where we recall that the ût’s are the OLS based residuals. In general the estimated resi-
duals ϵ̂t as well as the autocovariances Γ̂GLS(h) are not computable since they depend on
the unknown matrices Ht and the infeasible estimator θ̂GLS. For any fixed integer m ≥ 1,
the estimates of the first m residual autocovariances are defined by

γ̂OLS
m =vec

{(
Γ̂OLS(1), . . . , Γ̂OLS(m)

)}
, γ̂GLS

m =vec
{(

Γ̂GLS(1), . . . , Γ̂GLS(m)
)}
.

Now, let ΣG =
∫ 1

0
Σ(r)dr, ΣG⊗2 =

∫ 1

0
Σ(r)⊗2dr and

Φu
m =

m−1∑
i=0

{em(i+ 1)ep(1)
′ ⊗ ΣG ⊗ Id}

{
∆i ′ ⊗ Id

}
, (7)

Λu,θ
m =

m−1∑
i=0

{em(i+ 1)ep(1)
′ ⊗ ΣG⊗2}

{
∆i ′ ⊗ Id

}
, (8)

Λϵ,θ
m =

m−1∑
i=0

{
em(i+ 1)ep(1)

′ ⊗
∫ 1

0

G(r)′ ⊗G(r)−1dr

}{
∆i ′ ⊗ Id

}
, (9)

and Λu,u
m = Im ⊗ ΣG⊗2 , where em(j) is the vector of dimension m such that the jth

component is equal to one and zero elsewhere.
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Proposition 4. If model (1) is correct and Assumption A1 holds true, we have

T
1
2 γ̂OLS

m ⇒ N (0,ΣOLS), (10)

where
ΣOLS = Λu,u

m − Λu,θ
m Λ−1

3 Φu ′
m − Φu

mΛ
−1
3 Λu,θ ′

m + Φu
mΛ

−1
3 Λ2Λ

−1
3 Φu ′

m ,

T
1
2 γ̂GLS

m ⇒ N (0,ΣGLS), (11)

where
ΣGLS = Id2m − Λϵ,θ

m Λ−1
1 Λϵ,θ ′

m . (12)

In the particular case p = 0, ΣOLS = Λu,u
m and ΣGLS = Id2m.

Let us discuss the conclusions of Proposition 4 in some particular situations. In the
case where Σ(·) = σ2(·)Id (that includes the univariate AR(p) models) for some positive
scalar function σ(·), we have

Λϵ,θ
m =

m−1∑
i=0

{em(i+ 1)ep(1)
′ ⊗ Id ⊗ Id}

{
∆i ′ ⊗ Id

}
, Λ1=

∞∑
i=0

{
ψ̃i(1p×p ⊗ Id)ψ̃

′
i

}
⊗ Id,

so that in this case the asymptotic distribution of the ϵt autocovariances estimates γ̂GLS
m

do not depend on the volatility function Σ(·). Meanwhile, the (asymptotic) covariance
matrix ΣOLS still depends on the volatility function.

If we suppose that (ut) have a time-constant variance Σ(r) ≡ Σu, we obtain

Λ1 =E
[
X̃tX̃

′
t

]
⊗ Σ−1

u , Λϵ,θ
m =E

[
ϵmt X̃

′
t

]
⊗G−1

u , Λu,u
m = Im ⊗ Σ⊗2

u , Λ3 =E
[
X̃tX̃

′
t

]
⊗ Id,

where Σu = GuG
′
u, and

Λu,θ
m = E

[
umt X̃

′
t

]
⊗ Σu, Λ2 = E

[
X̃tX̃

′
t

]
⊗ Σu, Φu

m = E
[
umt X̃

′
t

]
⊗ Id,

where umt = (u′t, . . . , u
′
t−m)

′ and ϵmt = (ϵ′t, . . . , ϵ
′
t−m)

′. By straightforward computations

ΣOLS = Im ⊗ Σ⊗2
u − E

[
umt X̃

′
t

]
E
[
X̃tX̃

′
t

]−1

E
[
umt X̃

′
t

]′
⊗ Σu, (13)

ΣGLS = Id2m − E
[
ϵmt X̃

′
t

]
E
[
X̃tX̃

′
t

]−1

E
[
ϵmt X̃

′
t

]′
⊗ Id. (14)

Formula (13) (resp. (14)) corresponds to the (asymptotic) covariance matrix obtained in
the standard case with an i.i.d. error process of variance Σu (resp. Id), see Lütkepohl
(2005), Proposition 4.5. Herein, some dependence of the error process is allowed. In par-
ticular, equation (14) indicates that the homoscedastic (time-constant variance) case is
another situation where ΣGLS does not depend on error process variance Σu. However Pro-
position 4 shows that in general VAR models with time-varying variance the covariance
matrix ΣGLS depends on Σ(·).

We also consider the vector of residual autocorrelations : for a given integer m ≥ 1,
define

ρ̂OLS
m = vec

{(
R̂OLS(1), . . . , R̂OLS(m)

)}
where R̂OLS(h) = Ŝ−1

u Γ̂OLS(h)Ŝ
−1
u
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with Ŝ2
u = Diag{σ̂2

u(1), . . . , σ̂
2
u(d)}, σ̂2

u(i) = T−1
∑T

t=1 û
2
it, and

ρ̂GLS
a,m = vec

{(
R̂GLS(1), . . . , R̂GLS(m)

)}
where R̂GLS(h) = Ŝ−1

ϵ Γ̂GLS(h)Ŝ
−1
ϵ ,

with Ŝ2
ϵ = Diag{σ̂2

ϵ (1), . . . , σ̂
2
ϵ (d)}, σ̂2

ϵ (i) = T−1
∑T

t=1 ϵ̂
2
it. Since ϵt has identity variance

matrix, we can also define
ρ̂GLS
b,m = γ̂GLS

m .

Proposition 5. If model (1) is correct and Assumption A1 holds true, we have

T
1
2 ρ̂OLS

m ⇒ N (0,ΨOLS), (15)

where
ΨOLS = {Im ⊗ (Su ⊗ Su)

−1}ΣOLS{Im ⊗ (Su ⊗ Su)
−1},

where S2
u = Diag{ΣG,11, . . . ,ΣG,dd}. Moreover,

T
1
2 ρ̂GLS

m ⇒ N (0,ΣGLS), (16)

where ρ̂GLS
m stands for any of ρ̂GLS

a,m or ρ̂GLS
b,m .

Using Proposition 5, Ŝu and a consistent estimator of ΣOLS (that can build in a similar
way to that of ∆OLS

m , see Section 5), one can easily build a consistent estimate of ΨOLS

and confidence intervals for the OLS residual autocorrelations.

5 Modified portmanteau tests based on OLS

estimation

Corrected portmanteau tests based on the OLS residual autocorrelations are proposed
below. We use the standard Box-Pierce statistic, Box and Pierce (1970), introduced in
the VAR framework by Chitturi (1974)

QOLS
m = T

m∑
h=1

tr
(
Γ̂′
OLS(h)Γ̂

−1
OLS(0)Γ̂OLS(h)Γ̂

−1
OLS(0)

)
= T γ̂OLS′

m

(
Im ⊗ Γ̂−1

OLS(0)⊗ Γ̂−1
OLS(0)

)
γ̂OLS
m .

We also consider the Ljung-Box statistic (Ljung and Box (1978)) introduced in the VAR
framework by Hosking (1980)

Q̃OLS
m = T 2

m∑
h=1

(T − h)−1tr
(
Γ̂′
OLS(h)Γ̂

−1
OLS(0)Γ̂OLS(h)Γ̂

−1
OLS(0)

)
.

The following result, a direct consequence of Proposition 4 equation (10), provides the
asymptotic distribution of QOLS

m and Q̃OLS
m .

Theorem 1. If model (1) is correct and Assumption A1 holds true, the statistics QOLS
m

and Q̃OLS
m converge in law to

U(δOLS
m ) =

d2m∑
i=1

δolsi U2
i , (17)
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as T → ∞, where δOLS
m = (δols1 , . . . , δolsd2m)

′ is the vector of the eigenvalues of the matrix

ΩOLS
m = (Im ⊗ Σ

−1/2
G ⊗ Σ

−1/2
G )ΣOLS(Im ⊗ Σ

−1/2
G ⊗ Σ

−1/2
G ),

ΣG =
∫ 1

0
Σ(r)dr and the Ui’s are independent N (0, 1) variables.

When the error process is homoscedastic i.i.d. and m is large, it is well known that
the asymptotic distribution of the statistics QOLS

m and Q̃OLS
m under the null hypothesis H0

can be approximated by a chi-square law with d2(m− p) degrees of freedom, see Box and
Pierce (1970). In our framework, even for large m, the limit distribution in (17) can be
very different from a chi-square law. An example which illustrate this point is provided
in Patilea and Räıssi (2011).

Estimates of the weights which appear in (17) can be obtained as follows. First, let us
recall the following results proved by Patilea and Räıssi (2010) :

Σ̂G⊗2 := T−1

T∑
t=2

ût−1û
′
t−1 ⊗ ûtû

′
t = ΣG⊗2 + op(1), (18)

Σ̂G := T−1

T∑
t=1

ûtû
′
t = ΣG + op(1), (19)

Using the results of Proposition 2 a consistent estimator of Φu
m and Λu,θ

m given in (7)
and (8) is easily obtained by replacing A1, . . . , Ap with their OLS estimators in ∆ and
considering (18) and (19). Thus from this and the equations (18) and (19), one can easily
define a consistent estimator of ∆OLS

m . Denote the estimated eigenvalues of ∆OLS
m by

δ̂OLS
m = (δ̂ols1 , . . . , δ̂olsd2m)

′.
We are now ready to introduce the OLS residuals-based corrected versions of the Box-

Pierce (resp. Ljung-Box) portmanteau tests for testing the order of the VAR model (1).
With at hand a vector δ̂OLS

m , at the asymptotic level α, the Box-Pierce (resp. Ljung-Box)
procedure consists in rejecting the null hypothesis of uncorrelated error process (ut) when

P (QOLS
m > UOLS(δ̂

OLS
m ) | X1, . . . , XT ) < α

(resp. P (Q̃OLS
m > UOLS(δ̂

OLS
m ) | X1, . . . , XT ) < α). The p-values can be evaluated, for

instance, using the Imhof algorithm (Imhof, 1961).
Let us end this section with some remarks on the case Σ(·) = σ2(·)Id (that includes

the univariate AR(p) models with time-varying variance). In this case

∆OLS
m =

[∫ 1

0

σ2(r)dr

]−2

ΣOLS =

[∫ 1

0

σ2(r)dr

]−2 [∫ 1

0

σ4(r)dr

]
ΣGLS =: cσΣ

GLS,

and clearly, cσ ≥ 1. If in addition p = 0, by Proposition 4 we have ΣGLS = Id2m and hence
δOLS
m = cσ(1, · · · , 1)′.

6 Adaptive portmanteau tests

First note that since we assumed a deterministic volatility structure Cov(ut, ut−h) = 0
is equivalent to Cov(ϵt, ϵt−h) = 0. Therefore an alternative way to build portmanteau tests
for VAR(p) models with time-varying variance is to use approximations of the innovation
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ϵt. A nonparametric estimate of the volatility function is needed for building such ap-
proximations. The ALS residuals, proxies of the infeasible GLS residuals, are defined as
ϵ̌t = Ȟ−1

t Xt−Ȟ−1
t (X̃ ′

t−1⊗Id)θ̂ALS, and the adaptive autocovariances and autocorrelations

Γ̂ALS(h) = T−1

T∑
t=h+1

ϵ̌tϵ̌
′
t−h, R̂ALS(h) = Š−1

ϵ Γ̂ALS(h)Š
−1
ϵ ,

where Šϵ = Diag{σ̌ϵ(1), . . . , σ̌ϵ(d)}, σ̌2
ϵ (i) = T−1

∑T
t=1 ϵ̌

2
it, and Ȟt is the nonparametric

estimator obtained from Σ̌t and the identification condition on Ht, that is Ȟt = Σ̌
1/2
t .

Let γ̂ALS
m = vec{(Γ̂ALS(1), . . . , Γ̂ALS(m))}. Following the notation of the previous sec-

tion, for a given integer m ≥ 1, define the residual autocorrelations

ρ̂ALS
a,m = vec

{ (
R̂ALS(1), . . . , R̂ALS(m)

)}
and ρ̂ALS

b,m = γ̂ALS
m .

The main result of this section shows that γ̂ALS
m and ρ̂ALS

a,m are asymptotic equivalent
to γ̂GLS

m and ρ̂GLS
a,m . This will allow us to define new portmanteau statistics based on

the ALS residuals. The following proposition gives the asymptotic behavior of variances,
autocovariances and autocorrelations estimators based on the ALS estimator of θ0 and
the nonparametric estimate of the time-varying variance structure Σt. The results are
uniformly w.r.t the bandwidths.

Proposition 6. If model (1) is correct and under the assumptions of Proposition 3,
uniformly w.r.t. b ∈ BT

T−1

T∑
t=1

Ȟ ′
t ⊗ Ȟ−1

t =

∫ 1

0

G(r)′ ⊗G(r)−1dr + op(1). (20)

Moreover, given any m ≥ 1,

T
1
2

{
γ̂ALS
m − γ̂GLS

m

}
= op(1) and T

1
2

{
ρ̂ALS
m − ρ̂GLS

m

}
= op(1), (21)

where ρ̂ALS
m (resp. ρ̂GLS

m ) stands for any of ρ̂ALS
a,m and ρ̂ALS

b,m (resp. ρ̂GLS
a,m and ρ̂GLS

b,m ).

This asymptotic equivalence result allows us to propose portmanteau test statistics
adapted to the case of time-varying variance. Consider the Box-Pierce type statistic

QALS
a,m = T

m∑
h=1

tr
(
Γ̂′
ALS(h)Γ̂

−1
ALS(0)Γ̂ALS(h)Γ̂

−1
ALS(0)

)
= T γ̂ALS′

m

(
Im ⊗ Γ̂−1

ALS(0)⊗ Γ̂−1
ALS(0)

)
γ̂ALS
m ,

and
QALS

b,m = T ρ̂ALS′

b,m ρ̂ALS
b,m .

Consider also the Ljung-Box type statistics

Q̃ALS
a,m = T 2

m∑
h=1

(T − h)−1tr
(
Γ̂′
ALS(h)Γ̂

−1
ALS(0)Γ̂ALS(h)Γ̂

−1
ALS(0)

)
and

Q̃ALS
b,m = T 2

m∑
h=1

(T − h)−1tr
(
Γ̂′
ALS(h)Γ̂ALS(h)

)
.

The following theorem is a direct consequence of (11) and Proposition 3.
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Theorem 2. Under the assumptions of Proposition 3, the statistics QALS
a,m , QALS

b,m and

Q̃ALS
a,m , Q̃ALS

b,m converge in distribution to

U(δALS
m ) =

d2m∑
i=1

δalsi U2
i , (22)

as T → ∞, where δALS
m = (δals1 , . . . , δalsd2m)

′ is the vector of the eigenvalues of ΣGLS, and
the Ui’s are independent N (0, 1) variables.

To compute the critical values of the adaptive portmanteau tests, we first obtain a
consistent estimator of Λϵ,θ

m given in (9) by replacing A01, . . . , A0p by their ALS estimators
in K and using (20). Next we consider the estimate of Λ1 given in (6). Plugging these
estimates into the formula (12), we obtain a consistent estimator of ΣGLS with eigenvalues
δ̂ALS
m = (δ̂als1 , . . . , δ̂alsd2m)

′ that consistently estimate δALS
m .

There are several important particular cases that could be mentioned. In the case of
a VAR(0) model (i.e., the process (ut) is observed), ΣGLS = Id2m (see Proposition 4)
and hence the asymptotic distribution of the four test statistics in Theorem 2 would be
χ2
d2m, that means independent of the variance structure given by Σ(·). In the general case
p ≥ 1 where the autoregressive coefficients A0i, i = 1, ..., p have to be estimated, the
matrix Id2m − ΣGLS being positive semi-definite, the eigenvalues δals1 , ..., δalsd2m are smaller
or equal to 1. Since, in some sense, the unconditional heteroscedasticity is removed in the
ALS residuals, one could expect that the χ2

d2(m−p) asymptotic approximation is reasonably

accurate for the ALS tests. A theoretical example provided in Patilea and Räıssi (2011)
indicates that this is may not the case. The asymptotic distribution we obtain for the ALS
portmanteau statistics can be very different from the χ2

d2(m−p) approximation when the
errors are heteroscedastic. Finally, recall that from Sections 2 and 3 using the adaptive
estimators of the autoregressive parameters instead of the OLS estimators lead to a gain
of efficiency, so that it is advisable to compute the kernel smoothing estimator of the
variance function Σ(·) at the estimation stage. In this case, at the validation stage, the
ALS tests will not be more complicated than the OLS tests to implement.

Let us also point out that the eigenvalues δals1 , ..., δalsd2m will not depend on the variance
structure when Σ(·) = σ2(·)Id (in particular in the univariate case), whatever the value
of p is. Moreover, using the arguments of Box and Pierce (1970) one can easily show
that for large values of m, the law of U(δALS

m ) is accurately approximated by a χ2
d2(m−p)

distribution. However, in the general the multivariate setup the asymptotic distribution
in (22) depend on the variance function Σ(·).

7 Illustrative example

For real data illustration we consider the first differences of the quarterly U.S. interna-
tional finance data from January 1, 1970 to October 1, 2009 : the balance on services and
the balance on merchandise trade in billions of USD. The length of the series is T = 159.
From Figure 1 it seems that the series are stable but have a non constant volatility. The
series are available seasonally adjusted from the website of the research division of the
Federal Reserve Bank of Saint Louis.

In our VAR system the first component corresponds to the balance on merchandise
trade and the second corresponds to the balance on services trade. We adjusted a VAR(1)
model to capture the linear dynamics of the series. The ALS and OLS estimators are
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given in Table 1. The standard deviations into brackets are computed using the results
(3) and (4). In accordance with the results in Sections 2 and 3, we find that the ALS
estimation method seems better estimate the autoregressive parameters than the OLS
estimation method, in the sense that the standard deviations of the ALS estimators are
smaller than those of the OLS estimators.

Now we turn to the check of the goodness-of-fit of the VAR(1) model adjusted to the
first differences of the series. To illustrate the results of Proposition 4 we plotted the ALS
residual autocorrelations in Figure 2, and the OLS residual autocorrelations in Figure 3,
where we denote

R̂ij
OLS(h) =

T−1
∑T

t=h+1 ûi tûj t−h

σ̂u(i)σ̂u(j)
and R̂ij

ALS(h) =
T−1

∑T
t=h+1 ϵ̌i tϵ̌j t−h

σ̌ϵ(i)σ̌ϵ(j)
.

The ALS 95% confidence bounds obtained using (16) and (21) are displayed in Figure
2, while in Figure 3 we plotted the standard 95% confidence bounds obtained using (13)
and the OLS 95 % confidence bounds obtained using (15). We can remark that the ALS
residual autocorrelations are inside the confidence bands or not much larger than the ALS
significance limits. A similar comment can be made for the OLS residual autocorrelations
when compared to the OLS significance limits. However we found that the OLS signi-
ficance limits can be quite different from the standard significance limits. This can be
explained by the possible presence of unconditional volatility in the analyzed series. In
particular we note that the R̂21

OLS(5) is far from the standard confidence bounds. We also
apply the different portmanteau tests considered in this paper for testing if the errors are
uncorrelated. The test statistics and the corresponding p-values are displayed in Table 2.
It appears that the p-values of the standard tests are very small, that means the standard
tests clearly reject the null hypothesis. We also remark that the p-values of the modi-
fied tests based on the OLS estimation and of the adaptive tests are far from zero. Thus
in view of the tests introduced in this paper the null hypothesis is not rejected. These
contradictory results can be explained by the fact that we found that the distribution in
(17) is very different from the χ2

d2(m−p) standard distribution. For instance we obtained

supi∈{1,...,d2m}

{
δ̂olsi

}
= 11.18 for m = 15 in our case. Our findings may be viewed as a

consequence of the presence of unconditional heteroscedasticity in the data. Since the
theoretical basis of the standard tests do not include the case of stable processes with non
constant volatility, we can suspect that the results of the standard tests are not reliable.
Therefore we can draw the conclusion that the practitioner is likely to select a too large
autoregressive order in our case when using the standard tools for checking the adequacy
of the VAR model. We also noticed that the weights (not reported here but available upon
request) of the sums in (17) and in (22) are quite different for our example.

14



BIBLIOGRAPHY

1. Boswijk, H.P., and Zu, Y. (2007), “Testing for cointegration with nonstationary volatility,” Working
Paper, University of Amsterdam.

2. Box, G.E.P., and Pierce, D.A. (1970), “Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models,” Journal of the American Statistical Association
65, 1509-1526.

3. Cavaliere, G., Rahbek, A., and Taylor, A.M.R. (2010), “Testing for co-integration in vector auto-
regressions with non-stationary volatility,” Journal of Econometrics, 158, 7-24.

4. Chitturi, R. V. (1974), “Distribution of residual autocorrelations in multiple autoregressive schemes,”
Journal of the American Statistical Association 69, 928-934.

5. Hosking, J. R. M. (1980), “The multivariate portmanteau statistic,” Journal of the American
Statistical Association 75, 343-386.

6. Imhof, J. P. (1961), “Computing the distribution of quadratic forms in normal variables,” Biome-
trika 48, 419-426.

7. Kim C., and Park, J. (2010), “Cointegrating Regressions with Time Heterogeneity,” Econometric
Reviews, 29, 397-438.

8. Ljung, G.M. and Box, G.E.P. (1978), “On measure of lack of fit in time series models,” Biometrika
65, 297-303.

9. Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis. Springer, Berlin.
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Table 1 – The estimators of the autoregressive parameters of the VAR(1) model for the balance
data for the U.S. The standard deviations are into brackets.

Parameter θ1 θ2 θ3 θ4

ALS estimate 0.33[0.08] 0.02[0.02] −0.35[0.30] −0.07[0.08]
OLS estimate 0.45[0.23] 0.00[0.02] −1.02[0.60] 0.1[0.17]

Table 2 – The values of the Ljung-Box portmanteau test statistics (standard, modified OLS-
based and ALS-based) and the associated p-values for checking of the adequacy of the VAR(1)
model for the U.S. trade balance data.

m 5 15

Test statistic p−value Test statistic p−value

LBS
m 6.84 0.000 106.34 0.000

LBOLS
m 6.84 0.508 106.34 0.999

LBALS
m 25.73 0.064 66.83 0.159

Figure 1 – The differences of the balance on merchandise trade for the U.S. on the left panel and the

differences of the balance on services for the U.S. on the right panel in billions of dollars from 1/1/1970

to 10/1/2009, T=159.

16



P̂ 11
ALS(h) P̂ 12

ALS(h)

h h

P̂ 21
ALS(h) P̂ 22

ALS(h)

h h

2 4 6 8 10 12 14

-0.15

-0.1

-0.05

0.05

0.1

0.15

2 4 6 8 10 12 14

-0.15

-0.1

-0.05

0.05

0.1

0.15

2 4 6 8 10 12 14

-0.15

-0.1

-0.05

0.05

0.1

0.15

2 4 6 8 10 12 14 16

-0.2

-0.1

0.1

0.2

Figure 2 – The balance data for the U.S. : the ALS residual autocorrelations. The 95% confidence

bounds are obtained using (11) and (21).
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Figure 3 – The balance data for the U.S. : the OLS residual autocorrelations. The full lines 95%

confidence bounds are obtained using (15). The dotted lines 95% confidence bounds are obtained using

the standard result (13).
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