
NON PARAMETRIC TESTS FOR POISSONPROCESSES:STUDIES ON SPATIAL REPRESENTATIVENESSOF SERVICES
JANVIER 2012J. BESSAC(*), F. COQUET(*)(**), J.-M. FLOCH(***), M. FROMONT(*)(**)(*) IRMAR(**) CREST-Ensai(***) INSEE-DDARIntrodutionWe are interested in this paper in studying the spatial representativeness of servies likeshools, medial servies, pharmaies, shops, restaurants, banks... in the ity of Rennes.More preisely, we fous on the two following questions. May two di�erent servies beassumed to be identially spatially distributed in the ity or in a restrited area? Is thespatial distribution of one partiular servie homogeneous with respet to houses in theity or in a restrited area of interest?Assuming that the spatial representation of houses or servies an be modelized by aspatial Poisson proess (see [15℄ and [3℄ for instane), these questions an be translatedfrom a statistial point of view as problems of testing proportionality or equality of theintensities of two independent spatial Poisson proesses.Here we hoose to investigate non parametri tests that have been reently proposedby Baringhaus and Franz [2℄, Gretton et al. [14℄, and Fromont, Laurent, Reynaud-Bouret[12℄. Sine the tests by Fromont, Laurent, Reynaud-Bouret were not studied in pratiein the original paper in a spatial ontext, we �rst evaluate the performane of the abovetests with multivariate simulated data.Then, we apply them to eonomi data from l'INSEE ontaining the (x, y)-oordinatesof houses and servies on a map of Rennes in 2007. The obtained results are mostly inaordane with our expetations. But some of these results also pose new theoretialquestions, thus on�rming that modelizing eonomi data with Poisson proesses, morefrequently used in reliability and biology, o�ers a lot of possibilities.
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1 Point proesses and Poisson proesses1.1 De�nition and �rst propertiesPoint proesses are the mathematial tool at hand to modelize dots (or events) that appearat random on a domain. Here, "at random" may be understood with respet to time, orwith respet to spae, or both. Let us take the example of the opening of new shops in agiven town along a spei� year: we may be interested in the spei� times of opening, ifwe want to identify periods of more or less ative trading; alternatively we may onsiderthe loations hosen by these shops if we want to get a piture of the more or less dynamiareas, or we an get interested in when and where the shops open. One mathematialway to address those problems is to represent eah new shop by a dot on the map, andto observe where or/and when the dots appear: the outome is a point proess.Poisson proesses are by far the most popular point proesses. Roughly speaking, apoint proess is a Poisson proess if dots appear independently (in time and/or in spae)from eah other. Remarkably enough, this heuristis has led to a variety of de�nitions ofa Poisson proess, aording to the �eld of interest, all of whih are lukily ompatible.The de�nition we shall use here is taken from [17℄. It seems to be the losest to ourpurpose.A spatial point proess N is a random ountable subset of X ⊂ R
2. We assoiate to

N its intensity, whih is a measure ξ on X, assumed to be bounded on ompat sets andabsolutely ontinuous w.r.t. the Lebesgue measure ν. Let s be the assoiated density,also alled intensity of N . For all B ⊂ X, we denote by N(B) the number of elements of
N that lie in B.De�nition 1. N is a Poisson proess on X ⊂ R

2 with intensity s w.r.t. ν if and only if1. For every B ⊂ X suh that ξ(B) < ∞, N(B) is distributed aording to a Poissondistribution with parameter ξ(B) =
∫

B
s(x)dνx;2. Conditionally to the event "N(B) = n", N ∩ B has the same distribution as an

n i.i.d. sample with ommon density s/
∫

B
s(x)dνx with respet to the Lebesguemeasure ν on X.The intensity s has to be understood in an easy way: in areas of X where s takes highvalues, you will expet more dots than in areas where s takes low values, and you will�nd no dots at all in subsets of X where s = 0. If the intensity s is onstant, you willexpet the dots to be uniformly distributed on X.De�nition 2. N is said to be homogeneous if and only if its intensity is onstant on X.Among the lassial properties of a Poisson proess, we only reall here the mostimportant one.Proposition 1. If B1, · · · , Bk are disjoint subsets of X, then N ∩ B1, · · · , N ∩ Bk areindependent.
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1.2 Poisson proesses and servies or houses representativenessReall that we study the representativeness of servies in the ity of Rennes. It seemsrather natural to assume that the oordinates of spei� servies or houses form non-homogeneous Poisson proesses in a subset of R
2.In order to be perfetly rigorous, this assumption should of ourse be validated by astatistial test, but to our knowledge, there is no suh test that ould be used in pratieyet.Starting however from this assumption, we an ompare the distributions of two ser-vies in any area of Rennes, or ompare the distribution of a partiular servie with thedistribution of houses by the means of statistial hypotheses tests of proportionality orequality of the intensities of two Poisson proesses.2 Two-sample problems for spatial Poisson proessesLet us onsider a measurable subspae X of R

2, equipped with the Lebesgue measure ν.Let N1 and N2 be two independent Poisson proesses observed on X, whose intensitieswith respet to ν are denoted by s1 and s2, and whose numbers of points are respetivelydenoted by |N1| and |N2|. Let now (X1, . . . , X|N1|) and (Y1, . . . , Y|N2|) denote the pointsof the proesses N1 and N2 respetively.Given the observation of N1 and N2, we �rst address the question of testing the nullhypothesis (Hp
0 ): "s1 and s2 are proportional" against the alternative (Hp

1 ): "they arenot". Some papers deal with the problem of testing (Hp
0 ): "s1/s2 is onstant" against"it is inreasing", suh as [5℄ and [10℄. Though the alternative "s1/s2 is inreasing" isusual in reliability ontexts, it has no sense in our ontext of servies representativenessstudy. We will use other tests, that will be alled here "onditional" tests. Notie that

(Hp
0 ) is true if and only if s1/

∫

X
s1(x)dνx = s2/

∫

X
s2(x)dνx. Therefore, from De�nition 1of Poisson proesses, one dedues that testing (Hp

0 ) against (Hp
1 ) amounts to testingdistributions equality for the two i.i.d. samples (X1, . . . , . . . , Xn1) and (Y1, . . . , Yn2) withrespetive sizes n1 and n2 obtained when onsidering N1 and N2 onditionally to theevent "|N1| = n1 and |N2| = n2". Many proedures have been and are still developedto solve this lassial i.i.d. two-sample problem. Of ourse, we �rst think about thefamous Kolmogorov-Smirnov and Cramer von Mises tests. However, while these testsare very simple to understand and implement when the observations are univariate, theirextensions to multivariate observations are not so lear. One an atually generalize theKolmogorov-Smirnov statisti for instane in many di�erent ways, generally expressed insuh a form:

TKS = sup
θ∈Θ

∣

∣

∣

∣

∣

1

n1

n1
∑

i=1

θ(Xi) −
1

n2

n2
∑

j=1

θ(Yj)

∣

∣

∣

∣

∣

,where Θ is a partiular lass of measurable funtions: X → R. Note that when X = Rand Θ is the set of indiators of ells (−∞, t], this exatly redues to the well-knownKolmogorov-Smirnov statisti. In this ase, sine the underlying distributions of the Xi'sand the Yj's are assumed to be atomless, this statisti is distribution free under the nullhypothesis, and the ritial values of the orresponding test are easy to ompute. In thease where X ⊂ R
2, this is not so simple. First, the hoie of the lass Θ is not obvious.Then, the fat that the resulting statisti is in general not distribution free under thenull hypothesis also poses a ruial question: whih ritial values an we take here?3



This question is usually solved through general bootstrap approahes inluding Efron'sbootstrap or permutation bootstrap approahes (see [19℄ for instane). Friedman andRafsky proposed asymptotially distribution free multivariate extensions of Kolmogorov-Smirnov and Wald-Wolfowitz testing statistis under the null hypothesis. We hose toinvestigate a new version of the old Cramer test proposed by Baringhaus and Franz[2℄, whih has appeared to be ompetitive in the univariate ase, regarding Kolmogorov-Smirnov and Cramer von Mises tests, and the reent Kernel Maximum Mean Disrepanytest proposed by Gretton et al. [14℄, whih has been ompared to Friedman and Rafsky'stest among others.We seondly address the question of testing (H0): "s1 = s2" against the alternative
(H1): "s1 6= s2". Many papers deal with this two-sample problem for homogeneousPoisson proesses suh as, among others, the historial ones of [20℄, [8℄, [13℄, and [21℄, orthe more reent ones of [16℄, [18℄, [7℄, and [6℄. However, very few papers fous on thistwo-sample problem for non-homogeneous Poisson proesses, whih is onsidered here. Toour knowledge, the paper by Fromont, Laurent, Reynaud-Bouret [12℄ is the only one toaddress this problem exatly. Of ourse, any level α test of (Hp

0 ) against (Hp
1 ) is also a level

α test of (H0) against (H1), but the resulting test may be too onservative. Hene, whenthe problem of testing (H0) against (H1) is the only one to be onsidered, we exlusivelyinvestigate the tests proposed in [12℄.We detail all the investigated tests in the two following setions.Let Ps1,s2 be the joint distribution of (N1, N2). We set for any event A based on
(N1, N2), P(H0)(A) = sups1,s2,s1=s2

Ps1,s2(A).2.1 Conditional tests from the lassial i.i.d. two-sample problemLet n1 and n2 be some positive integers. From De�nition 1, we know that onditionallyto the event "|N1| = n1 and |N2| = n2", (X1, . . . , X|N1|) and (Y1, . . . , Y|N2|) have the samedistribution as two i.i.d. samples (X1 . . . , Xn1) and (Y1, . . . , Yn2) with respetive densities
s̃1 = s1/

∫

X
s1(x)dνx and s̃2 = s2/

∫

X
s2(x)dνx w.r.t. the Lebesgue measure ν on X. Giventhe observation of N1 and N2, we here onsider the problem of testing (Hp

0 ): "s1 and s2 areproportional" against (Hp
1 ): "they are not", whih amounts to testing the null hypothesisof equality between the distributions of the i.i.d. samples (X1 . . . , Xn1) and (Y1, . . . , Yn2).2.1.1 Cramer testBaringhaus and Franz [2℄ start from a result stating that if ‖.‖ denotes the Eulideannorm of R

d, X̃, X̃ ′ are random vetors of R
d with the same density s̃1 w.r.t. the Lebesguemeasure, with �nite expetation, Ỹ , Ỹ ′ are random vetors of R

d with the same density
s̃2, with �nite expetation, and if X̃, X̃ ′, Ỹ , Ỹ ′ are independent, then

2E

[

‖X̃ − Ỹ ‖
]

− E

[

‖X̃ − X̃ ′‖
]

− E

[

‖Ỹ − Ỹ ′‖
]

≥ 0.
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Moreover, the equality is true if and only if s̃1 = s̃2 (see Theorem 2.1 in [2℄). This resultand the law of large numbers lead to the following testing statisti:
TCramer =

n1n2

n1 + n2

(

1

n1n2

n1
∑

i=1

n2
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j=1

‖Xi − Yj‖ −
1

2n2
1

n1
∑

i,k=1

‖Xi −Xk‖

− 1

2n2
2

n2
∑

j,k=1
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)

=
n1n2

n1 + n2

(

2

n1n2

n1
∑

i=1

n2
∑

j=1

ϕ
(

‖Xi − Yj‖2
)

− 1

n2
1

n1
∑

i,k=1

ϕ
(

‖Xi −Xk‖2
)

− 1

n2
2

n2
∑

j,k=1

ϕ
(

‖Yj − Yk‖2
)

)

,with ϕ(t) =
√
t/2. The authors then suggest to rejet the null hypothesis (Hp

0 ) when
TCramer is large, that is in fat larger than a ritial value to de�ne. Contrary to thelassial Kolmogorov-Smirnov or Cramer-von Mises testing statistis in the univariateontext, and to Friedman-Rafsky testing statisti in the multivariate ontext, the statisti
TCramer is not distribution free under the null hypothesis. Hene, given a presribed level
α, the (1 − α) quantile of TCramer under (Hp

0 ) an not be taken as ritial value forthe test. Baringhaus and Franz propose to onsider either an Efron's bootstrapped or apermutation bootstrapped version T ∗
Cramer of the statisti TCramer given the pooled sample

Z = (X1, . . . , Xn1, Y1, . . . , Yn2). As explained in details in [23℄ for instane, they onsiderthe (1 − α) quantile of T ∗
Cramer given Z, that we denote here by c∗Cramer(1 − α). Thetest proposed by Baringhaus and Franz [2℄ then onsists in rejeting the null hypothesis

(Hp
0 ) when TCramer is larger than c∗Cramer(1−α). Let us introdue the orresponding testfuntion, that we denote by ΦCramer:

ΦCramer = 1TCramer>c∗
Cramer

(1−α). (2.1)Baringhaus and Franz all their test Cramer test as Cramer [9℄ already proposed a similartesting statisti for the one-sample goodness-of-�t problem in the univariate ontext. Theyuse asymptoti arguments from [23℄ to validate the bootstrap approah. They thus provethat their test is asymptotially of level α, and that it is onsistent against any �xedalternative. They �nally estimate the powers of their test mainly under univariate andmultivariate normal loation and dispersion alternatives, and they ompare these powerswith the ones of the usual parametri t-test and F -test, Kolmogorov-Smirnov and Cramervon Mises tests in the univariate ontext, and with the ones of the Hotelling's T 2-test andBartlett's LR-test in the multivariate ontexts. They onlude that Cramer test performswell under suh alternatives.The test ΦCramer is furthermore implemented in the software environment R in thefuntion ramer.test of the ramer pakage, where various options are available. Amongthese options, the user an hoose to apply the test ΦCramer de�ned in (2.1), but alsoto apply another version of the test whih is de�ned in the same way as in (2.1), justhanging ϕ in the seond expression of TCramer. We will only onsider in the followingtwo ases: the original test denoted by ΦCramer, and the test orresponding to the hoieof ϕ(t) = 1 − exp(−t/2) whih was proposed by Bahr [1℄ and whih is hene de�ned by
ΦBahr = 1TBahr>c∗

Bahr
(1−α), (2.2)5



where
TBahr =

n1n2

n1 + n2

(

2

n1n2

n1
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i=1

n2
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j=1

ϕ
(
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)

− 1
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1

n1
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(
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)
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2
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∑
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ϕ
(
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)

)

,with ϕ(t) = 1− exp(−t/2), and c∗Bahr(1−α) is a ritial value obtained from a bootstrapapproah. The user may also hoose either Efron's bootstrap or permutation bootstrapto determine the ritial values of the tests.2.1.2 Kernel Maximum Mean Disrepany testLet Θ be a lass of funtions θ : X → R and let X̃ and Ỹ be two independent randomvariables on X with respetive densities s̃1 and s̃2 w.r.t. ν. Gretton et al. [14℄ de�ne theMaximum Mean Disrepany (MMD) over Θ as:
MMD[Θ, s̃1, s̃2] = sup

θ∈Θ

(

Es̃1 [θ(X̃)] − Es̃2 [θ(Ỹ )]
) (2.3)

= sup
θ∈Θ

(
∫

X

θ(x)s̃1(x)dνx −
∫

X

θ(y)s̃2(y)dνy

)

. (2.4)Notiing that when Θ is the spae of bounded ontinuous funtions on X,MMD[Θ, s̃1, s̃2] =
0 if and only if s̃1 = s̃2, any "good" estimator of MMD[Θ, s̃1, s̃2] or MMD[Θ, s̃1, s̃2]

2 forinstane may be a pertinent testing statisti. Sine one an reasonably not work inpratie with the spae of bounded ontinuous funtions on X, Gretton et al. [14℄ sug-gest to onsider other lasses of funtions Θ, whih are rih enough to guarantee that
MMD[Θ, s̃1, s̃2] = 0 if and only if s̃1 = s̃2, but restritive enough for the resulting testto be onsistent. Namely, they onsider the unit balls of universal Reproduing KernelHilbert Spaes. Universal RKHSs are de�ned in [14℄ and it is proved in partiular in [22℄that the RKHS assoiated with the usual Gaussian kernel is universal. The authors atu-ally prove that when Θ is the unit ball of suh a universal RKHS HK de�ned on X withassoiated positive de�nite kernel K and representation funtion ψ, then the equivalene
MMD[Θ, s̃1, s̃2] = 0 ⇔ s̃1 = s̃2 holds. Moreover, from a lemma in [4℄, one has in thisase that

MMD[Θ, s̃1, s̃2]
2 = ‖Es̃1 [ψ(X̃)] − Es̃2 [ψ(Ỹ )]‖2

HK

= Es̃2K(X̃, X̃ ′) + Es̃2K(Ỹ , Ỹ ′) − 2Es̃1,s̃2K(X̃, Ỹ ),where X̃ ′ and Ỹ ′ are independent opies of X̃ and Ỹ , independent from X̃ and Ỹ , and
‖.‖HK

is the norm in HK . Hene an unbiased estimator of MMD[Θ, s̃1, s̃2]
2 is easilyobtained when n1 = n2 as

TKMMD,n1 =
1

n1(n1 − 1)

n1
∑

i6=j=1

(

K(Xi, Xj) +K(Yi, Yj) −K(Xi, Yj) −K(Xj , Yi)
)

. (2.5)One an also always (that is also when n1 6= n2) onsider the empirial estimator of
MMD[Θ, s̃1, s̃2] de�ned by
TKMMD,n1,n2 =

(

1

n2
1
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i,k=1

K(Xi, Xk) +
1

n2
2

n2
∑
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K(Yj, Yk) −
2

n1n2
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∑
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)
1
2

,(2.6)6



and hoose one of these estimators as testing statisti. Given a presribed level α, Gret-ton et al. [14℄ propose to rejet the null hypothesis (Hp
0 ) when TKMMD,n1 is larger thana ritial value c∗KMMD,n1

(1− α) or when TKMMD,n1,n2 is larger than c∗KMMD,n1,n2
(1−α).

c∗KMMD,n1
(1 − α) and c∗KMMD,n1,n2

(1 − α) may be dedued from di�erent approahes.
c∗KMMD,n1

(1 − α) may be determined from a uniform onvergene bound for TKMMD,n1based on Hoe�ding's onentration inequality under the null hypothesis or from an esti-mation of the (1−α) asymptoti quantile of TKMMD,n1 under the null hypothesis based oneither Efron's bootstrap approah given the pooled sample Z or a moments approximationapproah. c∗KMMD,n1,n2
(1−α) may also be determined from a uniform onvergene boundfor TKMMD,n1,n2 based on Hoe�ding's onentration inequality under the null hypothesis,or a bootstrap approah.Let us introdue the orresponding test funtions:

ΦKMMD,n1 = 1TKMMD,n1
>c∗

KMMD,n1
(1−α), (2.7)and

ΦKMMD,n1,n2 = 1TKMMD,n1,n2
>c∗

KMMD,n1,n2
(1−α). (2.8)Note that when K is the usual Gaussian kernel with a bandwidth equal to 1 that iswhen K(x, x′) = exp(−‖x − x′‖2/2), and when the ritial value c∗KMMD,n1,n2

(1 − α) isobtained from a bootstrap method, ΦKMMD,n1,n2 is very lose to ΦBahr. Indeed, in thisase,
T 2

KMMD,n1,n2
=
n1 + n2

n1n2
TBahr.2.2 Adaptive non parametri multiple testing proeduresLet us now fous ont he problem of testing (H0): "s1 = s2" against the alternative

(H1): "s1 6= s2". We here give a short desription of the testing proedures proposed byFromont, Laurent, Reynaud-Bouret[12℄. For more details, we refer to the original paper.We denote by ||.||ν the L
2(X, dν)-norm, and by < ., . >ν the salar produt assoiatedwith ||.||ν on X.We assume as in [12℄ that s1 and s2 are both in L

∞(X) ∩ L
1(X, dν). Notiing thatthis in partiular implies that s1 and s2 belong to L

2(X, dν), Fromont, Laurent, Reynaud-Bouret propose to use non parametri estimators of ‖f − g‖2
ν as testing statistis. Forinstane, onsidering a �nite dimensional subspae S of L

2(X, dν) and an orthonormalbasis {ϕλ, λ ∈ Λ} of S for < ., . >ν , they introdue the random variable T̂ de�ned by
T̂ =

∑

λ∈Λ

|N |
∑

i6=i′=1

ϕλ(Zi)ϕλ(Zi′)ε
0
i ε

0
i′,where (Z1, . . . , Z|N |) denotes the points of the pooled Poisson proess N omposed of thepoints from both N1 and N2 (with size |N | = |N1|+ |N2|), ε0

i = 1 when Zi belongs to N1and ε0
i = −1 when Zi belongs to N2. Then T̂ is an unbiased estimator of ||ΠS(f − g)||2ν,where ΠS is the orthogonal projetion onto S, and it may be a relevant hoie of testingstatisti. Introduing the orresponding wild bootstrapped statisti de�ned as

T̂ ε =
∑

λ∈Λ

|N |
∑

i6=i′=1

ϕλ(Zi)ϕλ(Zi′)εiεi′7



where (εi)i∈N is a sequene of i.i.d. Rademaher variables independent of N , Fromont,Laurent, Reynaud-Bouret prove that onditionally to N , under (H0), the distributionof T̂ ε is exatly the same as the distribution of T̂ . Hene, given a presribed level αin (0, 1), they introdue the (1 − α) quantile of T̂ ε onditionally to N denoted by q(N)
1−αand they rejet (H0) when T̂ > q

(N)
1−α. The onditional quantile q(N)

1−α hene presents thefollowing advantages: �rst it leads to an exat level α test, and seondly, it an be easilyapproximated by a lassial Monte Carlo method.Starting from this �rst proedure, Fromont, Laurent, Reynaud-Bouret generalize it bynotiing that the funtion: X
2 → R, (z, z′) 7→∑

λ∈Λ ϕλ(z)ϕλ(z
′) is known as a projetionkernel in Learning Theory. They propose then to onsider any symmetri kernel funtion

K hosen among the three possibilities desribed below, and to introdue the testingstatisti
T̂K =

|N |
∑

i6=i′=1

K(Zi, Zi′)ε
0
i ε

0
i′. (2.9)As above, onsidering its wild bootstrapped version

T̂ ε
K =

|N |
∑

i6=i′=1

K(Zi, Zi′)εiεi′, (2.10)and the (1−α) quantile of T̂ ε
K onditionally to N that they denote by q(N)

K,1−α, they proposeto rejet (H0) when
T̂K > q

(N)
K,1−α.Let us give below the three possible hoies for K.1. A �rst hoie for K is a symmetri kernel funtion based on an orthonormal family:

K(z, z′) =
∑

λ∈Λ

ϕλ(z)ϕλ(z
′),where {ϕλ, λ ∈ Λ} is an orthonormal family for < ., . >ν .2. A seond hoie for K is a kernel funtion based on an approximation kernel k: for

z = (z1, z2), z′ = (z′1, z
′
2) in R

2,
K(z, z′) =

1

h1h2
k

(

z1 − z′1
h1

,
z2 − z′2
h2

)

,where k is an approximation kernel in L
2(R2), and suh that k(−z) = k(z), and

h = (h1, h2) is a vetor of 2 positive bandwiths.3. A third hoie for K is a learning or Merer kernel suh that
K(z, z′) = 〈ψ(z), ψ(z′)〉HK

,where ψ and HK are respetively a representation funtion and a RKHS assoiatedwith K. Here 〈., .〉HK
denotes the salar produt of HK .
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This test ould be viewed as a version of the test of Gretton et al. [14℄ adapted to thePoisson framework. However, the ritial value is here not hosen in the same way as in[14℄. Fromont, Laurent, Reynaud-Bouret [12℄ atually propose a ritial value leading toa test with good theoretial non asymptoti performane in the sense that it is exatly oflevel α and that it also ahieves a presribed probability of seond kind error for s1 and
s2 that are not very far from eah other.Of ourse, the question of the hoie of the kernel funtion K is ruial here, sinedi�erent kernel funtions may lead to very di�erent performane. While Gretton etal. [14℄ alibrate the parameters of the hosen kernel funtion by a heuristi approah,Fromont, Laurent, Reynaud-Bouret [12℄ overome this di�ulty by onsidering an aggre-gation method spei� to adaptive testing. Instead of taking a single kernel funtion, theypropose to introdue a �nite olletion of kernel funtions {Km, m ∈ M}, hosen amongthe possibilities listed above. For every m in M, let T̂Km

and T̂ ε
Km

be respetively de�nedby (2.9) and (2.10) with K = Km, and let {wm, m ∈ M} be a olletion of positivenumbers suh that ∑m∈M e−wm ≤ 1. For u ∈ (0, 1), let q(N)
m,1−u be the (1 − u) quantile of

T̂ ε
Km

onditionally to the pooled proess N . The test proposed in [12℄ rejets (H0) whenthere exists at least one m in M suh that
T̂Km

> q
(N)

m,1−u
(N)
α e−wmwhere u(N)

α is de�ned as
u(N)

α = sup

{

u > 0,P

(

sup
m∈M

(T̂ ε
Km

− q
(N)
m,1−ue−wm ) > 0

∣

∣

∣

∣

∣

N

)

≤ α

}

. (2.11)Let ΦAgg be the orresponding test funtion de�ned by
ΦAgg = 1

supm∈M

(

T̂Km−q
(N)

m,1−u
(N)
α e−wm

)

>0
. (2.12)Note that given the observation of the pooled proessN , u(N)

α and the quantiles q(N)

m,1−u
(N)
α e−wman be estimated by a Monte Carlo proedure.This multiple testing proedure has been onstruted to be exatly of level α that is

P(H0) (ΦAgg = 1) ≤ α.Then it is proved to satisfy orale type inequalities, and when adequate approximationkernels are hosen, to be adaptive in the minimax sense over multivariate Sobolev andanisotropi Nikol'skii-Besov balls.2.3 Simulation studyWe aim here at evaluating the pratial performane in terms of levels and powers of thefour tests ΦCramer, ΦBahr, ΦKMMD,n1,n2 and ΦAgg de�ned by (2.1), (2.2), (2.8) and (2.12).We onsider various densities with respet to the Lebesgue measure on X = [0, 1]2 or
X = R

2, that are uniform and normal densities, and deviations from them. Let us thusintrodue the following notations:
fa,ε(x) = 1(0,1)2(x) + ε1(0,a)2(x) − ε1(a,2a)2(x),

fµ(x) =
1

2 × 0.152π
exp

(

‖x− µ‖2/(2 × 0.152)
)

.9



We �rst hoose several parameters (a, ε) in [0, 0.5]× [0, 1] and µ in R and we realize 1000simulations of two independent Poisson Proesses N1 and N2 with respetive intensities
200f0,0 and 200fa,ε or 200f0.5 and 200fµ w.r.t. the Lebesgue measure ν of R

2.All the tests onsidered here are applied with a level α = 0.05.Working onditionally to the event "|N1| = n1 and |N2| = n2", we onsider ΦCramerand ΦBahr with Efron's bootstrap method with 1000 bootstrap repliates, whih are im-plemented in the R funtion ramer.test of the pakage ramer. Then, we onsider
ΦKMMD,n1,n2 with a Gaussian kernel with bandwidth σ seleted from a heuristi approahof Gretton et al. [14℄, and we run it with the Matlab program given in open aess by theauthors.We furthermore onsider ΦAgg with a family of kernel funtions �rst based on thestandard Gaussian approximation kernel kG and seondly based on the Epanehnikovapproximation kernel kE, where: kG(z) = exp(−‖z‖2/2) for all z ∈ R

2 and kE(z1, z2) =
(1 − z2

1)(1 − z2
2)1‖(z1,z2)‖≤1. For both tests, we onsider the olletion of bandwidths

{hm, m ∈ M} = {1/24, 1/16, 1/12, 1/8, 1/4, 1/2} and the assoiated olletion of kernelfuntions {Km, m ∈ M} given for all m ∈ M either by Km(z, z′) = 1
h2

m
kG

(

z−z′

hm

) or
Km(z, z′) = 1

h2
m
kE

(

z−z′

hm

). We take for both tests wm = 1/|M| = 1/6, and we denotethem respetively by ΦAgg,G and ΦAgg,E . Let us reall that the tests ΦAgg,G and ΦAgg,Erejet the null hypothesis (H0) when there exists m in M suh that
T̂Km

≥ q
(N)

m,1−u
(N)
α e−wmwhere N orresponds to the pooled proess obtained from N1 and N2, and u(N)

α is de�nedin (2.11). Hene, for eah observation of the pooled proess N , we have to estimate u(N)
αand the quantiles q(N)

m,1−u
(N)
α e−wm

. These estimations are done as in [12℄ by lassial MonteCarlo methods based on the simulation of 400000 independent samples of size |N | of i.i.d.Rademaher variables. Half of the samples is used to estimate the distribution of eah T̂ ε
Km

.The other half is used to approximate the onditional probabilities ourring in (2.11).The point u(N)
α is obtained by dihotomy, suh that the estimated onditional probabilityourring in (2.11) is less than α, but as lose as possible to α. We implemented the testwith Matlab from Fromont, Laurent, Reynaud-Bouret [12℄'s programs.For eah of the 1000 simulations of the Poisson Proesses N1 and N2, we determinethe onlusions of the tests ΦCramer, ΦBahr, ΦKMMD,n1,n2, ΦAgg,G and ΦAgg,E. The levelsor powers of the tests are estimated by the number of rejetions for these tests dividedby 1000. The results are given in the following table.Densities ΦCramer ΦBahr ΦKMMD,n1,n2 ΦAgg,G ΦAgg,E

(f0,0, f0,0) 0.052 0.052 0.06 0.0485 0.046
(f0,0, f0.25,0.8) 0.10 0.09 0.15 0.17 0.18
(f0,0, f0.25,0.9) 0.10 0.09 0.18 0.23 0.21
(f0,0, f0.25,1) 0.14 0.11 0.21 0.26 0.25
(f0.5, f0.5) 0.048 0.046 0.043 0.0485 0.046
(f0.5, f0.52) 0.36 0.37 0.26 0.21 0.18
(f0.5, f0.54) 0.90 0.91 0.83 0.69 0.6610



Comments. The �rst thing we an notie here is that the tests ΦCramer, ΦBahr , and
ΦKMMD,n1,n2 are more powerful than ΦAgg,G and ΦAgg,E when the alternative is omposedof intensities with a smooth di�erene. On the ontrary, ΦAgg,G and ΦAgg,E are morepowerful than ΦCramer, ΦBahr, and ΦKMMD,n1,n2 when the alternative is omposed ofintensities with very loalized di�erenes. We are not really surprised here sine the testsdeveloped by Fromont, Laurent and Reynaud-Bouret were preisely onstruted to beadaptive over lasses of possibly very irregular alternatives. We ould surely improve thepowers of these tests for alternatives omposed of intensities with smooth di�erenes byonsidering another family of bandwidths or even another family of kernels.3 Studies on spatial representativeness of serviesThe data we study here are reported in two tables. The �rst table onsists in the (x, y)-oordinates on a map of the ity of Rennes of all houses, and the number of �ats perhouses (when needed) in 2007. The seond table onsists in the (x, y)-oordinates onthe same map of Rennes of various servies suh as administrative o�es, shops, shools,artisans, restaurants, medial servies, soial servies, ultural servies, with an INSEEode ("A101",...,"D237") giving the preise type of eah servie.3.1 Comparisons for various pairs of serviesWe �rst aim at omparing the distributions of various servies. For sake of simpliity,we resale the (x, y) original oordinates, so that (x, y) ∈ [0, 1]2. We represent the pointsthus obtained for servies on the following �gure.
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Figure 1: Representation of all servies11



We now onsider various pairs of servies, where eah pair is denoted by Servie1and Servie2. The points de�ned by the resaled oordinates orresponding to Servie1are assumed to be a Poisson proess N1 with intensity s1 with respet to the Lebesguemeasure on X = [0, 1]2, and the points de�ned by the resaled oordinates orrespondingto Servie2 are assumed to be a Poisson proess N2 with intensity s2 with respet to theLebesgue measure on X.The points of the Poisson proesses orresponding to eah onsidered pair of serviesare represented in the following �gures.
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Figure 2: Representation of publi and private seondary shools
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General medicine
Pharmacy

Figure 3: Representation of general mediine dotors and pharmaies
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Figure 4: Representation of pharmaies and medial analysis laboratories
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Pediatrics
Gynecology−obstetrics

Figure 5: Representation of pediatriians and obstetriians
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Figure 6: Representation of ophtalmologists and optiians
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Figure 7: Representation of lothing and shoe shops
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Figure 8: Representation of lothing shops and mini-markets
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Figure 9: Representation of mini-markets and restaurants
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Figure 10: Representation of baker's and buther's shops
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Figure 11: Representation of hairdressers and perfume shops3.1.1 Conditional testsIn this setion, we fous on the problem of testing (Hp
0 ) "s1 and s2 are proportional"against (Hp

1 ) "they are not" for the above pairs of servies. We apply the onditionaltests whih are desribed in Setion 2.1 and studied in Setion 2.3.For eah onsidered pair of servies, we work here onditionally to the event "|N1| = n1and |N2| = n2". The tests ΦCramer and ΦBahr de�ned by (2.1) and (2.2) are applied witha level α = 0.05, and with an Efron's bootstrap approximation with 100000 bootstraprepliates. The test ΦKMMD,n1,n2 de�ned by (2.8) is applied with a level α = 0.05, withthe method of moments approximation as reommended by the authors for moderatelysmall data sets, and with the default Gaussian kernel (whose bandwidth σ is heuristiallyseleted). The results are given in the following table. Eah row orresponds to a pair ofservies. Rejetion of the null hypothesis is denoted by 1, while aeptane is denoted by 0.Estimations of the p-values of the tests ΦCramer and ΦBahr are given between parentheses,and the heuristi hoie of σ is given between brakets for the test ΦKMMD,n1,n2.Servies ΦCramer ΦBahr ΦKMMD,n1,n2Publi (C201) / Private (C202) seond. shools 0(0.60) 0(0.75) 0[σ = 0.22℄General mediine (D201) / Pharmay (D301) 0(0.99) 0(0.89) 0[σ = 0.21℄Pharmay (D301) / Medial analysis lab. (D302) 0(0.64) 0(0.46) 0[σ = 0.23℄Pediatris (D210) / Gyneology-obstetris (D205) 0(0.09) 0(0.21) 0[σ = 0.23℄Ophtalmologist (D208) / Optiian (D234) 0(0.60) 0(0.71) 0[σ = 0.18℄Clothing shop (B302) / Shoe shop (B304) 0(0.39) 0(0.31) 0[σ = 0.05℄Clothing shop (B302) / Mini-market (B201) 1(0) 1(0) 1[σ = 0.22℄Mini-market (B201) / Restaurant (A504) 1(0) 1(0) 1[σ = 0.23℄Baker's (B203) / Buther's (B204) shops 0(0.99) 0(0.95) 0[σ = 0.18℄Hairdressing (A501) / Perfume shop (B310) 0(0.53) 0(0.57) 0[σ = 0.17℄17



3.1.2 Adaptive testsWe fous now on the problem of testing (H0) "s1 = s2" against (H1) "s1 6= s2" for theabove pairs of servies. We apply the tests Φagg,G and Φagg,E desribed in Setion 2.2 andalso studied in Setion 2.3.The results are given in the following table. Eah row orresponds to a pair of servies.Rejetion of the null hypothesis for a level of signi�ane α = 0.05 is denoted by 1, whileaeptane is denoted by 0.Servies Φagg,G Φagg,EPubli (C201) / Private (C202) seond. shools 0 0General mediine (D201) / Pharmay (D301) 1 1Pharmay (D301) / Medial analysis lab. (D302) 1 1Pediatris (D210) / Gyneology-obstetris (D205) 1 1Ophtalmologist (D208) / Optiian (D234) 0 0Clothing shop (B302) / Shoe shop (B304) 1 1Clothing shop (B302) / Mini-market (B201) 1 1Mini-market (B201) / Restaurant (A504) 1 1Baker's (B203) / Buther's (B204) shops 1 1Hairdressing (A501) / Perfume shop (B310) 1 13.1.3 CommentsWe mainly obtain results that are in aordane with the intuition we ould have lookingat the representations of the onsidered servies pairs. But notie that in some ases, thesizes of the Poisson proesses orresponding to both servies are small or moderately small,though the onditional tests onsidered here were essentially validated by asymptotialarguments. In other ases, the sizes of the Poisson proesses are very di�erent, with arather small one, and the tests seem to be sensitive to suh sizes onsiderations. Theseare the main limits of the present study. Surely, our onsidering the data as Poissonproesses on the whole spae [0, 1]2, and omparison tests for suh proesses, will haveto be revised. The partiular struture of the data, that are distributed on a disretenetwork of addresses of a network of streets will have to be taken into aount. The testsdeveloped by Gretton et al. and Fromont, Laurent, Reynaud-Bouret are based on kernelfuntions. Kernel funtions are preisely some of the most famous urrent tools to takledata with partiular strutures. For instane, onsidering the same tests as above, butwith a kernel spei�ally adapted to the struture involved here (as done for instane forgraphs, trees, or images analysis) will be an interesting trak to explore. A fundamentalstep for the onstrution of the test will also onsist in hoosing the best mathematialstruture to modelize the data spae.3.2 Representativeness of various servies with respet to housesThe question we takle in this setion is: "Are servies well distributed with respet tothe population in some partiular areas of the ity of Rennes?". A natural idea to answerthis question is to use onditional tests as explained above, to test (Hp
0 ) against (Hp

1 ) fortwo Poisson proesses N1 and N2, where N1 modelizes the oordinates of houses while N2modelizes the oordinates of a servie. 18



The main drawbaks of suh a use of onditional tests are the following ones. First, weannot here take into aount the number of aommodations per address sine a Poissonproess an not ontain several times the same point. Seondly, in muh areas of the ity,servies are far less numerous than houses, and we have seen that it an be a drawbakfor the use of onditional tests. We therefore hoose to onsider here only a small area ofthe enter of Rennes, where several servies may be rather numerous.Let us represent some of these servies with respet to houses.
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Figure 12: Representation of lothing shops w. r. t. houses in a small enter area
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Figure 13: Representation of shoe shops w. r. t. houses in a small enter area
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Figure 14: Representation of restaurants w. r. t. houses in a small enter area
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Figure 15: Representation of general mediine dotors w. r. t. houses in a small enterarea
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Figure 16: Representation of banks w. r. t. houses in a small enter area21



The obtained results are given in the following table. Rejetion of the null hypothesisfor a level of signi�ane α = 0.05 is denoted by 1, while aeptane is denoted by 0.Estimations of the p-values of the tests ΦCramer and ΦBahr are given between parentheses,and the heuristi hoie of σ is given between brakets for the test ΦKMMD,n1,n2.Servies ΦCramer ΦBahr ΦKMMD,n1,n2Clothing shop (B302) 0(0.16) 0(0.20) 0[σ = 0.01℄Shoe shop (B304) 1(0.018) 1(0.029) 1[σ = 0.01℄Restaurant (A504) 0(0.09) 0(0.23) 1[σ = 0.02℄General mediine (D201) 0(0.18) 0(0.32) 1 [σ = 0.15℄Bank (A203) 0(0.51) 0(0.71) 1[σ = 0.14℄Comments. The three tests give orroborating onlusions for lothing and shoe shops,hene we an trust these onlusions that are: the null hypothesis is aepted for lothingshops while it is rejeted for shoe shops for a level of signi�ane α = 0.05. Theseonlusions are in aordane with the intuition we ould have just looking at the �guresrepresenting the distribution of both shops. As onerns restaurants, the onlusions ofthe Cramer and Bahr's tests di�er from the onlusion of Gretton et al.'s test. This maybe explained by the low estimated p-values for the �rst tests: the test of Gretton et al.rejets the null hypothesis, and with a level α = 0.1, the Cramer test would also rejet it.As for general mediine and banks, the onlusions of the tests are not orroborating, butone an not here impute this to low p-values for the Cramer and Bahr's test. We onjeturethat the tests su�er here from the too small size of the Poisson proesses orrespondingto these servies. Indeed, the whole spae [0, 1]2 is onsidered here, whereas our data arenot distributed on this whole spae, but on a disrete network of points in this spae, orat least on a network of streets. This is again a question to be gone into more deeply,from both pratial and theoretial point of views.4 ConlusionsWe have �rst investigated the performane of the tests proposed by Bahr [1℄, Baringhausand Franz [2℄, Gretton et al. [14℄ and Fromont, Laurent, Reynaud-Bouret [12℄ in asimulation study. As expeted, when the number of simulated data is nearly the samefor the two Poisson proesses, but moderately small, the tests are not so powerful. Inpartiular, they all have di�ulties to detet the non proportionality or the equality whenthe intensities of the two Poisson proesses only have some very loalized di�erenes,even if the test of Fromont, Laurent, Reynaud-Bouret [12℄ is a bit more powerful in thisase. This leads us to think that we surely loose in power by onsidering spatial Poissonproesses in R
2 for our study on representativeness of servies. We ould for instanedevelop new tests of omparison for Poisson proesses not de�ned in R

2 but on a spaetaking the struture of streets or houses into aount.Furthermore, we used these tests to test the proportionality or the equality of theintensities of two Poisson proesses representing the resaled oordinates in [0, 1]2 of twodi�erent servies of the ity of Rennes. We of ourse sometimes ome up against theproblem of the sizes of the onsidered samples again, and the tests seem to be moreoververy sensitive to a large di�erene in sizes for the two proesses. This should have to beon�rmed by theoretial arguments or by a deeper pratial study.22



Finally, we used the tests of Bahr [1℄, Baringhaus and Franz [2℄, and Gretton et al. [14℄to test the proportionality between the intensities of two Poisson proesses representingthe resaled oordinates in [0, 1]2 of one servie on the one side, of houses on the other side.The obtained results are not ompletely satisfying sine we were onstrained to onsider avery restrited area so that the sizes of the Poisson proesses do not di�er too muh. Usingsome tests of homogeneity for the Poisson proess representing the onsidered serviesuh as those of Fromont, Laurent, Reynaud-Bouret [11℄ should be more appropriate.Of ourse, these tests should also take the struture of the streets or the house to bee�etive. It is obvious that some tests of homogenity over a onvex set of R
2 wouldnot have good performane. Bessa indeed applied suh tests of homogeneity derivedfrom a multivariate Kolmogorov-Smirnov tests, and the null hypothesis of homogeneityover onvex areas of Rennes was always rejeted. Construting a homogeneity test for aPoisson proess de�ned on a spae with a very partiular struture will be hallenging.The use of kernels as done in learning problems on graphs, phylogeneti trees, images forinstane, and as done in [12℄ should be a pertinent and useful tool.Referenes[1℄ Bahr, R. Ein neuer test fuer das mehrdimensionale zwei-stihproben-problem. Ph.D.thesis, University of Hanover (1996).[2℄ Baringhaus, L., and Franz, C. On a new multivariate two-sample test. J.Multivariate Anal. 88, 1 (2004), 190�206.[3℄ Bessa, J. Représentativité spatiale des équipements de la ville de Rennes parrappot aux logements. Tehnial Report.[4℄ Borgwardt, K., Gretton, A., Rash, M., Kriegel, H.-P., Shölkopf, B.,and Smola, A. Integrating strutured biologial data by kernel maximum meandisrepany. Bioinformatis 22 (14) (2006), e49�e57.[5℄ Bovett, J. M., and Saw, J. G. On omparing two Poisson intensity funtions.Comm. Statist. A�Theory Methods 9, 9 (1980), 943�948.[6℄ Chiu, S. N. Parametri bootstrap and approximate tests for two Poisson variates.J. Stat. Comput. Simul. 80, 3-4 (2010), 263�271.[7℄ Chiu, S. N., and Wang, L. Homogeneity tests for several Poisson populations.Comput. Statist. Data Anal. 53, 12 (2009), 4266�4278.[8℄ Cox, D. R. Some simple approximate tests for Poisson variates. Biometrika 40(1953), 354�360.[9℄ Cramer, H. On the omposition of elementary errors, 2nd paper. Skand. Aktuari-etidskr. 11 (1928), 141�180.[10℄ Deshpande, J. V., Mukhopadhyay, M., and Naik-Nimbalkar, U. V. Test-ing of two sample proportional intensity assumption for non-homogeneous Poissonproesses. J. Statist. Plann. Inferene 81, 2 (1999), 237�251.23
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