Simulations de tirages de zones d'action pour les enquêtes-ménages de l'Insee

UMS, Insee, Juin 2007

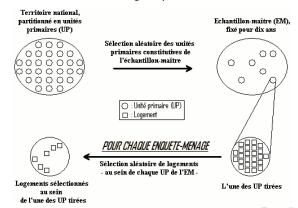
Fabien Guggemos

Université de Neuchâtel, Suisse

Journées de Méthodologie Statistique de l'Insee 2009 24 mars 2009

Lignes directrices

- Cadre général
 - Octopusse et la reconstruction des unités primaires
 - Enjeux des simulations
- Simulations de tirages de ZAE : Aspects théoriques
 - Les plans de sondage testés
 - Calculs de précision
- 3 Principaux résultats empiriques
 - Estimations par année de rotation
 - Evolutions temporelles des estimations
 - Estimations par type d'espace


Lignes directrices

- Cadre général
 - Octopusse et la reconstruction des unités primaires
 - Enjeux des simulations
- Simulations de tirages de ZAE : Aspects théoriques
 - Les plans de sondage testés
 - Calculs de précision
- 3 Principaux résultats empiriques
 - Estimations par année de rotation
 - Evolutions temporelles des estimations
 - Estimations par type d'espace

Echantillonnage pour les enquêtes-ménages de l'Insee

UP = Communes ou regroupements de communes

Le nouveau recensement (depuis 2004)

- Petites Communes (PC) (<10000 habitants): réparties en 5 groupes de rotation; 1 groupe recensé chaque année.
- Grandes Communes (GC) (>10000 habitants): enquête annuelle de recensement par sondage, disjonction des échantillons enquêtés sur un cycle de 5 ans.

Création des Zones Action Enquêteurs (ZAE)

Unités primaires reconstruites pour contenir systématiquement des logements recensés l'année précédente.

Quelques chiffres sur les ZAE

Création (UMS, automne 2006) d'un total de 3743 ZAE, dont :

- 850 ZAEGC. 1 ZAEGC = 1 grande commune
- 2893 ZAEPC.
 1 ZAEPC = regroupement d'au moins une commune de chaque groupe de rotation

Question

Comment sélectionner les ZAE pour la constitution du nouvel échantillon-maître, opérationnel de 2009 à 2019?

- Comment assurer le tirage d'un échantillon qui soit représentatif pour chaque année du cycle de rotation?
- 2 La qualité d'un échantillon tiré se dégrade-t-elle au fil des années?
- Omment assurer le tirage d'un échantillon représentatif des différents types d'espace, rural, périurbain et urbain?
- Utiliser des plans de sondage distincts d'une région à l'autre?

- Comment assurer le tirage d'un échantillon qui soit représentatif pour chaque année du cycle de rotation?
- La qualité d'un échantillon tiré se dégrade-t-elle au fil des années?
- Omment assurer le tirage d'un échantillon représentatif des différents types d'espace, rural, périurbain et urbain?
- Utiliser des plans de sondage distincts d'une région à l'autre?

- Comment assurer le tirage d'un échantillon qui soit représentatif pour chaque année du cycle de rotation?
- La qualité d'un échantillon tiré se dégrade-t-elle au fil des années?
- Comment assurer le tirage d'un échantillon représentatif des différents types d'espace, rural, périurbain et urbain?
- Utiliser des plans de sondage distincts d'une région à l'autre?

- Comment assurer le tirage d'un échantillon qui soit représentatif pour chaque année du cycle de rotation?
- La qualité d'un échantillon tiré se dégrade-t-elle au fil des années?
- Onment assurer le tirage d'un échantillon représentatif des différents types d'espace, rural, périurbain et urbain?
- Utiliser des plans de sondage distincts d'une région à l'autre?

Lignes directrices

- Cadre général
 - Octopusse et la reconstruction des unités primaires
 - Enjeux des simulations
- Simulations de tirages de ZAE : Aspects théoriques
 - Les plans de sondage testés
 - Calculs de précision
- Principaux résultats empiriques
 - Estimations par année de rotation
 - Evolutions temporelles des estimations
 - Estimations par type d'espace

Principe général des simulations Monte-Carlo

disponibles sur toutes les communes françaises.

Pour un plan de sondage donné :

- Tirage de M échantillons indépendants selon ce plan,
- Pour chaque échantillon, estimations des totaux (nationaux et régionaux) de variables d'intérêt préalablement choisies,
- Analyse des distributions empiriques de ces totaux ; (Moyenne, biais, variance, EQM, CV empiriques)
- ▷ Comparaison des plans avec les résultats de l'étape 3.

Comment tirer un échantillon s_{ZAE} de ZAE?

Choix des paramètres :

```
Taux de sondage : \tau = 1/2000, Nombre de fiches-adresses par enquêteur : e = 20.
```

- Stratification régionale.
- **Probabilité d'inclusion** π_k de la ZAE k dans l'échantillon :

```
\pi_k \propto nres_k, nombre de résidences principales de la ZAE k.
```

- 37 ZAE exhaustives : Communes t.q. $nres \ge e/\tau = 40000$.
- 1 enquêteur par ZAE non exhaustive de l'échantillon, $\lceil \frac{nres_k \times \tau}{a} \rceil$ enquêteur(s) par ZAE exhaustive.

Comment tirer un échantillon "représentatif" de ZAE?

 Equilibrage sur des variables X choisies au préalable : Sélection aléatoire de l'échantillon parmi tous ceux pour lesquels l'estimateur de Horvitz-Thompson du total de X coincide avec le vrai total de X :

$$\sum_{k \in s_{ZAE}} \frac{X_k}{\pi_k} = \sum_{k \in U_{ZAE}} X_k.$$

Equilibrage réalisé par la méthode du CUBE, développée par J.-C. Deville et Y. Tillé.

Question

Quelles variables d'équilibrage choisir?

Les variables d'équilibrage retenues

Variables d'équilibrage		Plan de sondage					
variables d'equilibrage	No 1	No 2	No 3	No 4	No 5		
Nombre de Résidences principales RP 99	1	1	1	1	1		
Nb de Résidences princ. 99 dans le groupe de rotation 1	2	2	2	2	2		
Nb de Résidences princ. 99 dans le groupe de rotation 2	3	3	3	3	3		
Nb de Résidences princ. 99 dans le groupe de rotation 3	4	4	4	4	4		
Nb de Résidences princ. 99 dans le groupe de rotation 4	5	5	5	5	5		
Nb de Résidences princ. 99 grandes communes		6	6	-	-		
Nb de Résidences princ. 99 en zone rurale		-	-	6	6 ou 11		
Nb de Résidences princ. 99 en zone périurbaine	-	-	7	7	7 ou 12		
Revenu fiscal 2004 dans le groupe de rotation 1	-	-	8	8	8 ou 6		
Revenu fiscal 2004 dans le groupe de rotation 2	-	-	9	9	9 ou 7		
Revenu fiscal 2004 dans le groupe de rotation 3		-	10	10	10 ou 8		
Revenu fiscal 2004 dans le groupe de rotation 4	-	-	11	11	11 ou 9		
Revenu fiscal 2004 dans le groupe de rotation 5	-	-	12	8	12 ou 10		

Prise en compte du cycle quinquennal

Estimateur du total de la variable X dans le groupe de rotation i

$$\widehat{T}_{X_i} = \sum_{k \in s_{ZAE}} \frac{\widehat{X}_k}{\pi_k}$$
 avec $\widehat{X}_k = X_{k,i} \frac{nres_k}{nres_{k,i}}$

Le double indice k, i désignant le groupe de rotation i de la ZAE k.

- Estimateur légèrement biaisé. \widehat{X}_k , estimateur par le ratio du total de X dans la ZAE k. Meilleur (en termes d'EQM) que l'estimateur sans biais $\widehat{X}_k = 5 \cdot X_{k,i}$.
- Estimation exacte (biais et variance nuls) pour la variable de repondération nres.

Estimations par années de rotation du cycle quinquennal :

$$\widehat{T}_{X_i}, i=1,\ldots,5.$$

$$\widehat{T}_X = \left(\sum_{i=1}^5 \widehat{T}_{X_i}\right)/5.$$

- Estimations sur données des recensements antérieurs : RP 99, 90, 82, 75, 68, 62.
- Estimations par type d'espace : urbain, périurbain, rural

Estimations par années de rotation du cycle quinquennal :

$$\widehat{T}_{X_i}, i=1,\ldots,5.$$

$$\widehat{T}_X = \left(\sum_{i=1}^5 \widehat{T}_{X_i}\right)/5.$$

- Estimations sur données des recensements antérieurs : RP 99, 90, 82, 75, 68, 62.
- Estimations par type d'espace : urbain, périurbain, rural.

Estimations par années de rotation du cycle quinquennal :

$$\widehat{T}_{X_i}, i=1,\ldots,5.$$

$$\widehat{T}_X = \left(\sum_{i=1}^5 \widehat{T}_{X_i}\right)/5.$$

- Estimations sur données des recensements antérieurs : RP 99, 90, 82, 75, 68, 62.
- Estimations par type d'espace : urbain, périurbain, rural

Estimations par années de rotation du cycle quinquennal :

$$\widehat{T}_{X_i}, i=1,\ldots,5.$$

$$\widehat{T}_X = \left(\sum_{i=1}^5 \widehat{T}_{X_i}\right)/5.$$

- Estimations sur données des recensements antérieurs : RP 99, 90, 82, 75, 68, 62.
- Estimations par type d'espace : urbain, périurbain, rural.

Lignes directrices

- Cadre général
 - Octopusse et la reconstruction des unités primaires
 - Enjeux des simulations
- Simulations de tirages de ZAE : Aspects théoriques
 - Les plans de sondage testés
 - Calculs de précision
- Principaux résultats empiriques
 - Estimations par année de rotation
 - Evolutions temporelles des estimations
 - Estimations par type d'espace

Estimations par année du cycle quinquennal

Quelques résultats, pour le plan de sondage préconisé in fine.

Année	Biais		
de	relatif	cv (%)	
rotation	(%)		
1	0.683	0.311	
2	0.566	0.320	
3	0.538	0.321	
4	0.700	0.324	
5	0.850	0.340	
SANS	0.667	0.270	

Année	Biais			
de	relatif	cv (%)		
rotation	(%)			
1	0.000	0.000		
2	-0.023	0.067		
3	-0.029	0.075		
4	0.000	0.000		
5	0.000	0.000		
SANS	-0.010	0.021		

Année	Biais			
de	relatif	cv (%)		
rotation	(%)			
1	1.407	0.438		
2	1.538	0.467		
3	1.459	0.449		
4	1.488	0.457		
5	1.447	0.441		
SANS	1.468	0.311		

Population sans double compte, RP 99

Nombre de résidences principales, RP 99 Revenu fiscal 2004

Estimations sur données des recensements antérieurs

	Popula	ation	Nomb	re de	Nombre de naissances			
	san	ıs	réside	nces				
RP	double o	ompte	princi	principales		depuis RP précédent		
	Biais	Biais cv Biais cv		Biais	cv			
	relatif	(%)	relatif	(%)	relatif	(%)		
	(%)	(70)	(%)		(%)	(70)		
1962	1.559	1.349	1.353	1.419	2.119	1.470		
1968	0.395	1.104	0.331	1.186	-0.127	1.207		
1975	-0.522	0.776	-0.556	0.851	-2.129	1.165		
1982	-0.185	0.481	-0.450	0.524	-2.696	1.071		
1990	0.380	0.334	-0.188	0.248	-1.368	0.839		
1999	0.661	0.327	-0.011	0.021	-0.644	0.717		

Estimations par type d'espace

	Plan		Plan		Plan		Plan		Plan	
Type	No	1	No	2	No	3	No.	4	No 5	
	Biais		Biais		Biais		Biais		Biais	
d'espace	relatif	cv	relatif	cv	relatif	cv	relatif	cv	relatif	cv
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	Population sans double compte RP 99									
urbain	0.030	3.050	0.111	2.181	0.028	2.099	0.039	0.899	0.001	0.904
périurbain	-0.080	6.017	-0.348	5.147	-0.171	4.503	0.015	1.824	0.001	1.865
rural	0.011	6.155	0.141	5.854	0.093	5.008	-0.103	2.127	0.037	2.060
			Nombre	e de réside	nces princi	pales RP 9	99			
urbain	0.040	3.051	0.095	2.059	0.027	2.009	0.038	0.793	-0.011	0.791
périurbain	-0.084	5.989	-0.336	5.117	-0.165	4.524	0.011	1.789	0.003	1.804
rural	-0.010	6.162	0.116	5.819	0.106	4.956	-0.107	2.093	0.024	2.022
Revenu fiscal 2004										
urbain	-0.045	3.109	0.149	2.431	0.035	2.084	0.048	0.979	0.010	0.976
périurbain	-0.086	6.161	-0.369	5.146	-0.169	4.447	0.037	2.025	-0.029	2.050
rural	-0.024	6.130	0.128	5.848	0.069	5.201	-0.076	2.229	0.018	2.175

Conclusion

Des simulations pour guider le choix du plan de sondage du nouvel échantillon-maître.

- Estimations de bonne précision dès le premier plan testé, malgré la prise en compte des groupes de rotation.
- Bon comportement des estimations vis-à-vis des évolutions temporelles de la base de sondage
- Nécessité d'équilibrer sur des variables caractéristiques des types d'espace.

Lectures complémentaires I

Le projet Octopusse de nouvel échantillon-maître de l'Insee. Communication JMS 2009.

Théorie des sondages, échantillonnage et estimation en populations finies.

Dunod Paris, 2001.

Deville, J.-C. and Tillé, Y.
Efficient balanced sampling: The cube method.

Biometrika, 91:893–912, 2004.

Chauvet, G. and Tillé, Y.

A fast algorithm of balanced sampling.

Computational Statistics, 21:53–61, 2006.

Cadre général simulations de tirages de ZAE : Aspects théoriques Principaux résultats empiriques Conclusion

Merci de votre attention.