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ABSTRACT 

 

Random imputation methods are often used in practice because they tend to preserve the 

distribution of the variable being imputed, which is an important property when the goal is to 

estimate quantiles. Also, random hot-deck imputation, which is a random imputation method, 

is often used if the variable being imputed is categorical because it eliminates the possibility 

of impossible values. However, random imputation methods introduce an additional amount 

of variability, called the imputation variance, due to the random selection of residuals. In this 

paper, adapting the Cube method (Deville and Tillé, 2004) for selecting balanced samples we 

propose a class of random balanced imputation methods which reduce/eliminate the 

imputation variance while preserving the distribution of the variable being imputed. A limited 

simulation study supports our finding. 
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1. INTRODUCTION 

 

To compensate for item nonresponse in surveys, imputation methods are often used.  The 

latter are used to replace missing values with artificial values in order to reduce, as much as 

possible, the bias and the variance introduced because of the missing values.  Imputation 

methods may be classified into two broad classes:  deterministic and random (or stochastic).  

Deterministic methods are those that yield a fixed imputed value given the sample if the 

imputation process is repeated as opposed to random methods that do not necessarily yield the 

same imputed value. One popular random imputation method used in practice is random hot-

deck imputation that consists of selecting respondent (donor) values from the set of 

respondents to impute the missing values. In practice, it is often required to estimate 

population totals (or means) or quantiles (such as the median). While deterministic imputation 

methods lead to asymptotically unbiased estimators if the underlying imputation or 

nonresponse model is correctly specified (e.g., Haziza, 2008), they are not appropriate when 

the objective is to estimate a quantile (e.g., a median) because this type of imputation methods 

tends to distort the distribution of the variables being imputed. As a result, estimators of 

quantiles could be severely biased, especially if the nonresponse rate is appreciable. To 

preserve the distribution, it is customary to use a random imputation method.  Also, if the 

variable being imputed is categorical, random hot-deck is preferable to avoid the possibility of 

impossible values in the imputed data file. However, this type of imputation methods 

introduces an additional amount of variability (called the imputation variance) due to the 

random selection of residuals. In some cases, the contribution of the imputation variance is 

important resulting in potentially inefficient estimators. It is thus desirable to develop 

imputation strategies which considerably reduces (or eliminates) the imputation variance 

while preserving the distribution of the variable being imputed.  
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In the literature, three general approaches have been considered for reducing the imputation 

variance. First, the fractional imputation approach, which consists of replacing each missing 

value with 2M ≥  imputed values selected randomly and assigning a weight to each imputed 

value. For example, each imputed value may receive 1/M times the original weight. Fractional 

imputation was originally proposed by Kalton and Kish (1981, 1984) and studied by Fay 

(1996), Kim and Fuller (2004) and Fuller and Kim (2005). It is similar to multiple imputation 

(Rubin, 1987), although the estimation procedures are different. It can be shown that the 

imputation variance decreases as M increases. One drawback of fractional imputation is that it 

may be cumbersome in practice since M imputed values are needed for each missing value. 

Also, the vast majority of surveys use single imputation methods. The second approach 

consists of first imputing the missing values using a standard random imputation method (e.g., 

random hot deck imputation) and adjusting the imputed values in such a way that the 

imputation variance is eliminated. This approach was considered by Chen, Rao and Sitter 

(2000) in the case of random hot-deck imputation. One drawback of the method is that, once 

the imputed file is produced with the use of random hot-deck imputation, the imputed values 

need to be adjusted by the data user, which may be seen as not practical. Also, the adjustment 

procedure will generally lead to impossible imputed values in the case of categorical 

variables. Finally, the third approach consists of randomly selecting donors (or residuals) in 

such a way that the imputation variance is reduced.  This approach was originally considered 

by Kalton and Kish (1981; 1984) in the context of simple random sampling who suggested 

that donors (or residuals) may be selected by stratified sampling within imputation classes or 

by systematic sampling from a list of respondents ordered by their value taken by the variable 

being imputed. The idea behind these types of procedures is to select imputed values so that 

appropriate balancing equations are (approximately) satisfied. Following Kalton and Kish, 
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Deville (2006) proposed an algorithm for selecting imputed values while satisfying 

appropriate balancing constraints.  

 

In this paper, we propose a class of random imputation method which we call balanced 

random imputation, and which is closely related to the third approach advocated by Kalton 

and Kish (1981, 1984) and Deville (2006). We introduce a general algorithm for balanced 

random imputation, adapted from the Cube method originally proposed by Deville and Tillé 

(2004). The proposed method consists of randomly selecting donors (or residuals) while 

satisfying given constraints. It can be readily applied to any type of random imputation 

method (e.g., random regression imputation) under any type of sampling design and can be 

used to impute continuous or categorical variables. We show that the proposed class of 

imputation methods has the advantage of reducing the imputation variance significantly while 

preserving the distribution of the variable being imputed.  

 

In our view, the third approach is attractive because it uses single imputation to compensate 

for the missing values, which leads to the creation of a single data file. Also, once the data file 

is produced, the usual estimation methods can be readily applied by users. In other words, no 

special adjustments need to be made. Finally, even though the primary objective is to estimate 

population totals, analysts may also be interested in studying the distribution of the variables 

that have been imputed, in which case deterministic methods would generally lead to 

misleading inferences. For this reason, we advocate for the use of balanced imputation 

methods.  

 

The outline of the paper is as follows: in section 2, we present the imputation model and the 

corresponding imputed estimator. We derive the expression of the imputation variance and 
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introduce the concept of balanced random imputation methods. A general algorithm, adapted 

from the so-called Cube method proposed by Deville and Tillé (2004), is presented in section 

3. In section 4, we show that the estimated distribution function based on observed and 

imputed values is a consistent estimator of the true distribution function under balanced 

random imputation. The estimation of more complex functions is considered in section 5. In 

section 6, the case of a categorical variable is considered. A limited simulation study 

comparing several imputation methods in terms of relative efficiency is presented in section 7. 

Finally, we conclude in section 8 and describe some future work. 

 

2. BALANCED RANDOM IMPUTATION 

 

Let {1 2 }U N= , ,...,  be a finite population consisting of N  elements. We consider the problem 

of estimating a population total ii U
Y y

∈
=∑ , where iy  denotes the i -th value of the variable 

of interest y , 1i N= ,..., . In section 2 and 3, we consider the case of continuous y. The case of 

binary y is considered in section 6. We select a sample, s , of size n , according to a given 

sampling design ( )p s .  Let iπ  denote the first-order inclusion probability of unit i  in the 

sample and let 1i iw π= /  denote its design weight. In the absence of nonresponse, a basic 

estimator is the expansion estimator given by  

 ˆ
i i

i s
Y w yπ

∈

= .∑  (2.1) 

The estimator Ŷπ  in (2.1) is p -unbiased for Y ; that is, ( )ˆ
pE Y Yπ = ,  where the subscript p 

indicates the sampling design ( )p s . In the presence of nonresponse to item y, we observe the 

y-values for a subset of the sampled units only. Let iy∗  denote the imputed value used to 

replace the missing iy . We define an imputed estimator ÎY  as 
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 ( )ˆ 1I i i i i i i
i s i s

Y w r y w r y∗

∈ ∈

= + − ,∑ ∑  (2.2) 

where ir  is a response indicator attached to unit i such that 1ir =  if unit i  responds to item y  

and 0ir = , otherwise. Also, let rs be the random set of respondents of size rn  and ms  the 

random set of non-respondents of size .mn  

 

Most of the imputation methods used in practice can be motivated by the general model 

  

                                                                 ( ) ,i i i iy f vσ ε= +z                                           (2.3) 

where ( ).f  is a given function, ( )1 Kz z ′= ,...,z  is a K -vector of auxiliary variables available 

at the imputation stage for all the sampled units,  2σ  is an unknown parameter and iν  is a 

known constant. The iε ’s denote independent and identically distributed random variables 

from a common law (L) with mean 0 and variance 1 The subscript m in (2.3) indicates that the 

expectations, variances and covariances are evaluated with respect to the model. The model 

(2.3) is often called an imputation model (e.g., Särndal, 1992).  

 

In the case of deterministic imputation, the imputed value iy∗  is obtained by estimating ( ).f  

by ( )ˆ .rf  using the responding units; that is, ( )ˆ ,i r iy f∗ = z  for mi s∈ . Random imputation can 

be seen as a deterministic imputation to which a random noise iε
∗  is added.  That is,  

                                               ( )ˆ ˆ ,i r i i iy f σ ν ε∗ ∗= +z   for ,mi s∈                                          (2.4) 

where σ̂  is an estimator of .σ  In other words, for each random imputation, there is a 

corresponding deterministic imputation, which is obtained by setting 0iε
∗ =  for all i. The 

random quantity iε
∗  can be generated from a given distribution. However, in practice, it is 
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natural to select (usually with replacement) the random component iε
∗  from the set, 

{ }; ,r j rE e j s= ∈  of standardized residuals observed from the responding units, with 

probabilities  

                                                          *( ) / ,i j j l l
l s

P e rε ω ω
∈

= = ∑                                           (2.5) 

where j j re e e= − ,  ( )( )1 ˆ
ˆj j r i

j

e y f
vσ

= − z , r j j j j jj s j s
e r e rω ω

∈ ∈
= /∑ ∑  and jω  is an 

imputation weight attached to unit j.  This method for selecting the random residuals iε
∗  is 

nonparametric in nature since it consists of generating random residuals from the empirical 

distribution function of the residuals,  

                                                    ( ) ( ),
ˆ ,r j j j

j s

F t r e tε ω
∈

= ≤∑ 1                                                 (2.6) 

based on the responding units, where /j j l l
l s

rω ω ω
∈

= ∑  and ( ).1  is the usual indicator 

function.  

 

 Several choices of jω  are possible: the choice j jwω =  leads to the customary survey 

weighted random imputation, whereas the choice 1jω =  leads to unweighted random 

imputation. Other choices of imputation weights are possible (Haziza, 2009). Note that the 

imputed value iy∗  in (2.4) can be viewed as the sum of a deterministic component, ( )r̂ if z , 

and a random component iε
∗ .  

 

Letting ( )i if ′=z z β  in (2.3) leads to the model underlying (deterministic and random) 

regression imputation, where β  is a K -vector of unknown parameters. Random regression 

imputation is thus obtained from (2.4) by setting ( )ˆ ˆ ,r i i rf ′=z z B  where  
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1ˆ

r i i i i i i i i i ii s i s
r r yω ν ω ν

−

∈ ∈
⎡ ⎤′= / /⎣ ⎦∑ ∑B z z z  

 
is the weighted least square estimator of β  based on the responding units. That is, random 

regression imputation uses the imputed values 

 

                                                       ˆ ˆ .i i r i iy σ ν ε∗ ∗′= +z B                                                   (2.7) 

Random hot-deck imputation within classes, which is a popular method in practice, can be 

viewed as a special case of (2.7). It consists of first partitioning the sample into K imputation 

classes, 1,..., ,...,k Ks s s . Within a class, a missing value is replaced by the value of a 

respondent selected randomly (with replacement) from the set of respondents within that 

class. Imputations are performed independently across classes. Let 1kiz =  if unit i belongs to 

class k and  0,kiz =  otherwise; 1,2,..., .k K=  Random hot deck imputation (RHDI) within 

classes is obtained from (2.7) by setting  ( )1i i Kiz z ′= ,...,z and  i kν ν=  if i  belong to class k.  

 

Using the imputed values (2.4) in (2.2) leads to  

 

                  
( ) ( ) ( )

( ) ( ) ( )

ˆˆ ˆ1 1

ˆ ˆ    = 1 1 ,

I i i i i i r i i i i i
i s i s i s

i i i i i r i i i i j ji j
i s i s i s j s

Y w r y w r f w r

w r y w r f w r r d e

σ ν ε

σ ν

∗

∈ ∈ ∈

∈ ∈ ∈ ∈

= + − + −

+ − + −

∑ ∑ ∑

∑ ∑ ∑ ∑

z

z
                  (2.8)       

 

where 
1    if the residual  was selected for imputing the missing value 

0   otherwise
j i

ji

e y
d

⎧
= ⎨
⎩

 

 

Let the subscript q indicate the nonresponse mechanism and the subscript I indicate the 

imputation mechanism. The total variance of ÎY  given in (2.3) can be expressed as 

                                  ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ .I p q I I p q I I p q I IV Y V E E Y s E V E Y s E E V Y s= | + | + |                   (2.9) 
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The first term on the right hand side of (2.9) is the sampling variance, the second term is the 

nonresponse variance, whereas the third term is the imputation variance. The imputation 

variance is given by 

                     ( )
( )2

2
1

ˆ .
i i i

i s
p q I I p q i i i

i si i
i s

w r
E E V Y s E E re

r

ν
ω

ω
∈

∈
∈

⎡ ⎤−
⎢ ⎥| = ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑∑

                                         (2.10) 

Under mild regularity conditions, the imputation variance given by (2.10) is ( )2 ,O N n  which 

is the same order of magnitude as the sampling and nonresponse variances. From (2.10), we 

note that the magnitude of the imputation variance will be small if (i) the response rate is high 

in which case the term 
( )2 1i i i

i s

i i
i s

w r

r

ν

ω
∈

∈

−∑
∑

is likely to be small and (ii) the imputation model fits 

the data well, in which case the term 2
i i i

i s
reω

∈
∑  will be small. Otherwise, the contribution of 

the imputation variance to the total variance can be appreciable. 

  

For example, consider the case of simple linear regression imputation (SLRI). Deterministic 

SLRI is obtained from (2.7) by setting ( )1, ,i iz ′=z  1iν =  and 0iε
∗ =  for all i.  Random SLRI 

is obtained from (2.7) by setting ( )1,i iz ′=z  and 1.iν =  Let ( )ˆ
D IV Y  and ( )ˆ

R IV Y  denote the 

total variance of ÎY  under deterministic and random SLRI, respectively. Assume that the 

sample s is selected according to simple random sampling and that the nonresponse 

mechanism is uniform (that is, all the units have equal response probabilities, p say). Then, 

the relative contribution of the imputation variance to the total variance, 

( ) ( )
( )

ˆ ˆ
,

ˆ
R I D I

D I

V Y V Y
C

V Y

−
=  can be approximated by  
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( )( )

( )

2

2

1 1
,

1 1
yz

yz

p p
C

p
ρ

ρ

− −
≈

− −
                                                         (2.11) 

provided the sample size n is sufficiently large, where yzρ  denotes the coefficient of 

correlation between y and z. Figure 1 shows the contribution (in %) of the imputation variance 

to the total variance for a fixed value of yzρ  ( 0.8yzρ = ), whereas Figure 2 shows its 

contribution (in %) for a fixed value of p  ( 0.5p = ). It is clear from Figure 1 that the 

contribution of the imputation variance is increasing in [ ]max0, ,p where 
2

max 2

1
2

yz

yz

p
ρ
ρ

−
=

−
 is 

the value for which C in (2.11) is maximum, and decreases in the interval ( ]max ,1 .p  Note that 

when 0.8,yzρ =  we have max 0.51.p ≈  Also, it is clear from Figure 2 that the contribution of 

the imputation variance decreases as the coefficient of correlation between y and z increases, 

as expected. 

 

Figure 1: Contribution (in %) of the imputation variance to the total variance with 0.8.yzρ =  

1.00.80.60.40.20.0
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Figure 2: Contribution (in %) of the imputation variance to the total variance with 0.5.p =  

1.00.80.60.40.20.0
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We propose a balanced random imputation method which consists of selecting the residuals 

*
iε   so that the following equation is (approximately) satisfied: 

                                               ( )1 0i i i j ji j
i s j s

w r r d eν
∈ ∈

− =∑ ∑ .                                              (2.12) 

If the equation (2.12) is exactly satisfied, then the imputation variance is completely 

eliminated and the resulting estimator is fully efficient (Kim and Fuller, 2004). In some 

situations, it is not possible to satisfy (2.12) exactly but only approximately. In this case, the 

imputation variance is not completely eliminated but it is expected to be significantly reduced. 

In section 3, we describe a general algorithm for implementing the proposed imputation 

method.  

 

In the special case of random hot-deck imputation within classes, the condition (2.12) reduces 

to 

                                                          * , 1,...,mk rky y k K= =                                               (2.13) 
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noting that 1,
k

ji
j s

d
∈

=∑ where k

k

i i i
i s

rk
i i

i s

r y
y

r

ω

ω
∈

∈

=
∑
∑

 is the weighted mean of the respondents in class k 

and 
( )

( )

*

*

1

1
k

k

i i i
i s

mk
i i

i s

r y
y

r

ω

ω
∈

∈

−
=

−

∑
∑

 is the weighted mean of the imputed values in class k. In other 

words, eliminating the imputation variance will consist in selecting the imputed values at 

random within each class so that their mean matches the mean of the respondents within the 

same class. Chen, Rao and Sitter (2000) proposed a method for eliminating the imputation 

variance which consists of adjusting the imputed values obtained under RDHI so that (2.13) is 

satisfied. Note that our proposed balanced random imputation method does not require an 

adjustment of the imputed values. Rather, we select the imputed values at random so that 

(2.13) is satisfied, which is more attractive from a data user’s perspective. 

 

3. THE ALGORITHM 

In this section, we propose a general algorithm for balanced random imputation, adapted from 

the Cube method originally proposed by Deville and Tillé (2004). Consider the m rn n× table 

below: 

 1 ...  j  ... rn  

1 ( )11 1,eψ  ...  ( )1 ,j jeψ  ... ( )1 ,
r rn neψ  

      
i  ( )1 1,i eψ   ( ),ij jeψ   ( ),

r rin neψ  

      

mn  ( )1 1,
mn eψ  ...  ( ),

mn j jeψ  ... ( ),
m r rn n neψ  

 

where each cell ( , )i j  is given the value of the centered residual je  and the probability of 

selection ij j l l
l s

rψ ω ω
∈

= ∑ . Let *U  denote the population of m rn n× cells.  Note that a random 
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imputation obtained from (2.4) may alternatively be seen as the without replacement selection 

of a random sample *s of mn cells in *U . Since one residual exactly has to be selected for each 

nonrespondent, exactly one cell per row should be selected in *s . Also, since the selection 

probabilities given by (2.5) have to be exactly satisfied, the cell ( , )i j  should be included in 

the sample with probability ijψ . If these two constraints are satisfied, then the random 

selection of the sample of cells *s  leads to the imputed values given by (2.4).  

 

The constraint of selecting exactly one cell in row *i  may be written as                       

                                                     *
*

1

1,       1, , ,
rn

mi j
j

d i n
=

= =∑                                               (3.1) 

 

with * *
*1 ( , )

,
rn

i j i i
j i j s

d δ
= ∈

=∑ ∑  where * 1
i i
δ =  if *i i=  and * 0,

i i
δ =  otherwise. Since the sum of the 

inclusion probabilities on row *i is equal to 1, we have 
 

                                        * *
*1 ( , )

1 ,
rn

iji j i i
j i j U

ψ ψ δ
= ∈

= =∑ ∑  * 1, , .mi n=                                          (3.2) 

It follows that the system (3.1) can be written as a system of mn  balancing equations 

                                                  
* *( , ) ( , )

ij
ij

i j s i j Uijψ∈ ∈

=∑ ∑
x

x                                                              (3.3) 

on a mn  vector of variables  

                                                           ( )1, , mnx x
′

=x ,                                                         (3.4) 

where the variable 
*ix takes the value 

*

*
i
ij ij i i

x ψ δ=  on the cell ( , )i j . The selection of a sample 

of cells with respect to the balancing equations (3.3) and prescribed inclusion probabilities ijψ  

may be handled with balanced sampling by means of the Cube method proposed by Deville 

and Tillé (2004). The Cube algorithm is described in the appendix.  Note that the selection of 
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*s with the algorithm proposed and balancing variables x  given in (3.4) is equivalent to 

selecting independently and with replacement the random components *
iε in (2.4) from the set 

{ }; .r j rE e j s= ∈  In other words, the traditional imputation method in (2.4) can be viewed as a 

special case of the proposed method. 

 

Now, observe that (2.12) can also be written as a system of balancing equations. The left hand 

side (2.12) may be written as  

                                             
*

0

( , )

,
m r

ij
i i ji j

i s j s i j s ij

x
w v d e

ψ∈ ∈ ∈

=∑ ∑ ∑                                                    (3.5) 

with 0
ij i i ij jx w v eψ=  for the cell ( , )i j . On the other hand, we have 

*

0

( , )

0

m r

r

m

r

ij i i ij j
i s j si j U

j j
j s

i i
i s j

j s

x w v e

e
w v

ψ

ω

ω

∈ ∈∈

∈

∈
∈

=

=

=

∑ ∑ ∑

∑
∑ ∑

 

since 0.
r

j j
j s

eω
∈

=∑  It follows that (2.12) may be written as 

                                                        
* *

0
0

( , ) ( , )

ij
ij

i j s i j Uij

x
x

ψ∈ ∈

=∑ ∑ .                                                      (3.6) 

Selecting a sample balanced on variables ( )0 ,x ′′=x x , where x  is given in (3.4), with 

inclusion probabilities ijψ , ensures that (i) the selection probabilities given in (2.5) are exactly 

satisfied, (ii) one residual je  exactly is selected for each missing value iy , and (iii) equation 

(2.12) is exactly satisfied and, as a result, the variance imputation is eliminated.  
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In practice, note that there may exist no sample *s such that both equations (3.3) and (3.6) are 

exactly satisfied. The Cube method then involves a rounding process called the landing phase 

(see the Appendix) in order to end the sampling. If such a situation occurs, the inclusion 

probabilities remain exactly respected and exactly one cell is selected in each row, but 

equation (3.6) will only be approximately satisfied, in which case, the imputation variance 

will be considerably reduced but not totally eliminated.  

 

4. CONSISTENCY OF THE DISTRIBUTION FUNCTION 

 

In this section, we show that the proposed balanced random imputation preserves the 

distribution of the variable being imputed.  The finite population distribution function can be 

written as ( ) ( )1 .N i
i U

F t y t
N ∈

= ≤∑1  A complete data estimator of ( )NF t  is given by  

                                                       ˆ ( ) ( ),N i i
i s

F t w y t
∈

= ≤∑ 1                                                     (4.1) 

where i i l
l s

w w w
∈

= ∑ .  An imputed estimator of ( )NF t  is given by 

                                            ( ) ( ) ( ) ( )*ˆ 1 .I i i i i i i
i s i s

F t w r y t w r y t
∈ ∈

= ≤ + − ≤∑ ∑1 1                        (4.2) 

We consider the case of weighted random imputation; that is, .wi iω ≡ We assume that the 

following regularity conditions hold: 

C1: max ( / )iw O N n= ; 

C2: There exists a constant κ  such that ( )1i ip P rκ < ≡ =  for all i; 

C3: ( ) ( )1 2
,

ˆsup ( ) ( )t r pF t F t O nε ε
−− = ; 



 16

C4 : ( )
* *( , ) ( , )

, , 1 (1) , ,ij ijapp
I r p I r

i j s i j sij ij

b b
V s s o V s s

ψ ψ∈ ∈

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑x x , where ( ). , ,I rV s s x  denotes the 

variance, conditional on s  and rs , under imputation by means of balanced sampling with 

inclusion probabilities ijψ  and balancing variables x , ijb  denotes the value taken by a non-

random (conditional on s  and rs ) variable b  in cell ( , )i j , 

* *

2

( , ) ( , )

ˆ ( )
, , (1 )ij ij ijapp

I r ij ij
i j s i j Uij ij ij

b b b
V s s ψ ψ

ψ ψ ψ∈ ∈

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑
x

x  and   

* *

1

( , ) ( , )

ˆ ( ) (1 ) (1 )i j i j i j i j
ij ij i j i j i j i j

i j U i j Ui j i j i j i j

b
b ψ ψ ψ ψ

ψ ψ ψ ψ

−

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′∈ ∈

′ ′⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟′= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑

x x x
x x         (4.3) 

denotes a weighted prediction of .ijb  

 

The assumption (C1) guarantees that no extreme weight dominates the others. The assumption 

C2 states that the response probability is bounded away from 0. The assumption C3 states that 

the empirical distribution of the residuals corresponding to the responding units is a consistent 

estimator of the true distribution of the errors.  Finally, the assumption (C4) gives a variance 

approximation for balanced sampling analog to that considered in Deville and Tillé (2005). 

Note that assumption C4 was proved by Hajek (1964) in the special case of the maximum 

entropy balanced sampling design with .ij ij ijx ψ= =x   

 

Theorem: Suppose that conditions (C1-C4) hold. If the imputation model (2.3) holds, then 

( ) ( ) ( )1/2ˆ .I N pF t F t O n−− =  

Proof: The total error of ( )ˆ ,IF t  ( ) ( )ˆ ,I NF t F t−  can be expressed as 

                                   ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ .I N N N I NF t F t F t F t F t F t⎡ ⎤ ⎡ ⎤− = − + −⎣ ⎦ ⎣ ⎦  
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First, it follows from standard regularity conditions (e.g., Isaki and Fuller, 1982) that 

( ) ( ) ( )1/2ˆ .N N pF t F t O n−− =  It remains to show that ( ) ( ) ( )1/2ˆ ˆ .I N pF t F t O n−− =  To that end, let 

  

                 
( ) ( ) ( )*

1 2

ˆ ˆ ˆ( ) ( ) 1
,

I N i i i i i i
i s

F t F t w r t t

T T

ε ε
∈

⎡ ⎤Δ ≡ − = − ≤ − ≤⎣ ⎦

= −

∑ 1 1
                          (4.4) 

where ( ) ( )*
1

ˆ1 ,i i i i
i s

T w r tε
∈

= − ≤∑ 1  ( ) ( )2 1 ,i i i i
i s

T w r tε
∈

= − ≤∑ 1  
ˆ ( )ˆ  

ˆ
r i

i
i

t f zt
vσ

−
=  and 

( ) i
i

i

t f zt
vσ

−
= . We first show that the conditional nonresponse/imputation expectation of Δ in 

(4.4), given by                                                             

                                                       ( )x~,,)( rIm ssEEE Δ=Δ                                                  (4.5) 

is ),( 2/1−nO  where x  denotes the vector of balancing variables used for imputation; see 

section 3. First note that 2T  is independent of the imputation mechanism. Consequently, we 

have  

                                         

( ) ( )
( )
( ) ( )

1 2

1 2

, 2

1 2 3

, , , ,

, ,
ˆ ˆ1

I r I r

I r

i i r i
i s

E s s E T T s s

E T s s T

w r F t T

U U U

ε
∈

Δ = −

= −

= − −

= + +

∑

x x

x
                                (4.6) 

where ( ) ( ) ( )1 ,
ˆ ˆˆ ˆ1 ,i i r i i

i s
U w r F t F tε ε

∈

⎡ ⎤= − −⎣ ⎦∑  ( ) ( ) ( )2
ˆ ˆ1 ,i i i i

i s
U w r F t F tε ε

∈

⎡ ⎤= − −⎣ ⎦∑  and 

( ) ( ) ( )3 1 .i i i i i
i s

U w r F t tε ε
∈

= − − ≤⎡ ⎤⎣ ⎦∑ 1  As ( )1i i
i s

w r
∈

−∑  remains bounded under C1-C2, the 

term ( )1 | ,m rE U s s  is ( )1/2O n−  under C3. We also have 3( | , ) 0,m rE U s s = and 

( ) ( ) ( )( )2
3( | , ) 1 1m r i i i i

i s
V U s s w r F t F tε ε

∈

= − −∑  is asymptotically ( )1O n−  under C1-C3, so that 

1/2
3 ( ).pU O n−=  Now, suppose that ( )( ) ,i if z f z= β  and  ( )ˆ ˆ( ) ,r i i rf z f z= B  such that 
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( )1/2ˆ .r pO n−− =Β β  Moreover, we assume that ( ).Fε  has bounded density. It follows that 

( )rm ssUE ,2   is ( )1/2O n− . Consequently, ( )x~,, rIm ssEE Δ  is ( )1/2O n− . 

   

We now show that the conditional nonresponse/imputation variance of Δ in (4.4), given by                              

                                       ( ) ( )( ) , , , ,m I r m I rV E V s s V E s sΔ = Δ + Δx x                                      (4.7) 

is ( )1 ,O n−  where x  denotes the vector of balancing variables used for imputation; see section 

3. First, note that  

                                            
( ) ( )

( )
1 2

1

, , , ,
,

, ,
I r I r

I r

V s s V T T s s

V T s s

Δ = −

=

x x

x
                                      (4.8) 

since 2T  is independent of the imputation mechanism. Now, observe that 1T may alternatively 

be written as  

                                             

( ) ( )

*

1

( , )

ˆ1

,

i i j ji j i
i s j s

ij

i j s ij

T w r r d e t

b
ψ

∈ ∈

∈

= − ≤

=

∑ ∑

∑

1

                                     (4.9)     

where ( )ˆ .ij i ij j ib w e tψ= ≤1  Condition C4 implies that ( )1 , ,I rV T s s x  is asymptotically 

equivalent to ( )1 , ,app
I rV T s s x , and  

( ) ( )1 1, , , ,app app
I r I rV T s s V T s s≤x x  since x  includes ;x  see equation (3.4). The term 

( )1 , ,app
I rV T s s x  is in turn asymptotically equivalent to ( )1 , ,I rV T s s x  by assumption C4, 

which is the imputation variance we obtain when the random quantities *
iε  are selected 

independently and with replacement. Therefore, we get  

( ) ( ) ( ) ( )( )2
1 , ,

ˆ ˆˆ ˆ, , 1 1 .I r i i r i r i
i s

V T s s w r F t F tε ε
∈

= − −∑x  Under C1-C3, the order of magnitude of the 

latter term is ( )1 .O n−  
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We now consider the second term on the right-hand size of (4.7). It follows from (4.6) that 

( ) ,~,, 23 TTssE rI −=Δ x  where .)ˆ(ˆ)1(~
,3 ∑

∈
−=

si
irii tFrwT ε  Note that 3T  depends only on the 

ε ’s in the set of respondents rs , whereas 2T  depends only on the ε ’s in the set of 

respondents ms . As a result, these two terms are independent with respect to the imputation 

model (2.3), and ( ) ( ) ( )rmrmrIm ssTVssTVssEV ,,~,, 23 +=Δ x . We have  

( ) ∑
∈

−−=
si

iiiirm tFtFrwssTV ))(1)(()1(~, 2
2 εε . Under C1 and C2, the latter quantity is ( ).1−nO   

 

Consequently, Δ is asymptotically 1/2( )pO n− and the two quantities ˆ ˆ( ) and ( )I NF t F t can be 

taken as estimators of the same quantity, if the imputation model is correctly specified. 

 

5. THE CASE OF A BINARY VARIABLE 

 
 
In this section, we consider the case of a binary variable y. For simplicity, we first consider 

the case of a binary variable. Let 1iy =  if unit i possesses a given characteristic of interest and 

0,iy =  otherwise. We assume that the y-variable is parametrically modeled; that is, 

                                                     ( ) ( )01 ; ,i i iP y pφ ≡ = = z γ  

for some function  ( );.ip z  with parameter γ  evaluated at 0 ,γ  where iz  is a vector of 

auxiliary variables (as in section 2) available for both respondents and nonrespondents. Let  γ̂  

be an estimator of 0γ  and  

                                                               ( )ˆ ˆ;i ipφ = z γ                                                            (5.1) 
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be the estimated probability for unit i of possessing the characteristic of interest.  We are 

interested in estimating the proportion of individuals that possess the characteristic, 

1 .i
i U

Y y
N ∈

= ∑  A complete data estimator of Y  is given by ˆ ,y Y Nπ=  where Ŷπ  is given by 

(2.1), whereas an imputed estimator of Y  is given by ˆ ,I Iy Y N= where ÎY  is given by (2.2). 

To impute binary variables, deterministic imputation methods (such as regression imputation) 

are usually rejected because they generally lead to impossible values in the data file. One 

notable exception is nearest-neighbour imputation that uses donor (observed) values to impute 

for missing values. In this section, we consider a version of RHDI (see section 2). For missing 

iy , RHDI uses                                                                                       

                          *
ˆ1           with probability 

ˆ0          with probability 1-
i

i

i

y
φ

φ

⎧⎪= ⎨
⎪⎩

 

In this context, the imputation variance of ÎY  is given by 

                                 ( ) ( ) ( )2
2

1 ˆ ˆˆ 1 1 .p q I I p q i i i i
i s

E E V Y s E E w r
N

φ φ
∈

⎡ ⎤| = − −⎢ ⎥⎣ ⎦
∑                             (5.2) 

Under mild regularity conditions, the imputation variance in (5.2) is ( )1 ,O n−  which is the 

same order of magnitude than the sampling and the nonresponse variances. 

 

We propose a balanced random imputation method which consists of selecting the imputed 

values *
iy so that the following equation is approximately satisfied 

                                              * ˆ(1 ) (1 )i i i i i i
i s i s

w r y w r ϕ
∈ ∈

− = −∑ ∑                                                (5.3) 

If the equation (5.3) holds exactly, then the imputation variance is completely eliminated. We 

describe below an adaptation of the algorithm introduced in section 3 to handle the case of a 

binary variable. Consider the 2mn × table  



 21

 

 1 2  

1 11 11( , )eψ  12 12( , )eψ  

   

i  1 1( , )i ieψ  2 2( , )i ieψ  

   

mn  1 1( , )
m mn neψ  2 2( , )

m mn neψ  

 

where each cell ( , )i j is given the value 1ije =  if 1j =  and 0ije =  if 2j = , and the probability 

ˆij iψ ϕ=  if 1j =  and ˆ1ij iψ ϕ= −  if 2j = . A random imputation for variable y may be seen as 

the random selection of a sample *s  in the population *U of cells, in the sense that if the cell 

( , )i j  is selected in *s , the value 1 will be used for imputation of missing iy  if 1j = , and the 

value 0  will be used if 2j = . The selection of *s  must be such that (i) one cell exactly is 

selected in each line, (ii) the estimated probabilities in (5.1) are exactly respected and (iii) 

equation (5.3) holds approximately for the imputation variance to be strongly reduced. In a 

similar way than the method presented in section 3, the selection of such a sample *s  may be 

handled with the Cube method presented in the Appendix, with inclusion probabilities ijψ  and 

the vector ( )0 1
ij , , , mn

ij ij ijx x x=x , where  0
ij i ij ijx w eψ=  and  

*

*
i
ij ij i i

x ψ δ=  for * 1, , ,mi n=  where 

* 1
i i
δ =  if *i i= and * 0,

i i
δ =  otherwise. 

 

We now briefly consider the case of a categorical variable y  with K  possible characteristics. 

Let 1iy =  if unit i  possesses the first characteristic of interest, 2iy =  if unit i  possesses the 
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second characteristic of interest, and so on. Assume that the y  variable is parametrically 

modeled; that is, 

( ) ( )0,;k k
i i iP y k pϕ γ≡ = = z  

where 
1

1
K

k
i

k
ϕ

=

=∑ , for some function  ( );.ip z  with parameter γ  evaluated at 0,kγ  where iz  is a 

vector of auxiliary variables available for both respondents and nonrespondents. Let  ˆkγ  be an 

estimator of 0,kγ  and  

                                                                     ( )ˆ ˆ;k k
i ipϕ γ= z                                                   (5.4) 

be the estimated probability for unit i of possessing the characteristic of interest k , where 

1

ˆ 1
K

k
i

k
ϕ

=

=∑ . We are interested in estimating the proportion of individuals that possess the 

characteristic k , 1 1( ).k i
i U

Y y k
N ∈

= =∑  An imputed estimator of kY  is given by 

ˆ / ,kI kIy Y N= where k̂IY  is given by (2.2) where the variable iy  is replaced by 1( ).iy k=  For 

missing iy , we use 

* ˆwith probability .k
i iy k ϕ=  

If the imputation process is performed independently for each missing iy , the imputation 

variance of k̂IY  is given by 

( ) 2
2

1ˆ ˆ ˆ(1 ) (1 ) .k k
p q I kI p q i i i i

i s
E E V Y s E E w r

N
ϕ ϕ

∈

⎡ ⎤= − −⎢ ⎥⎣ ⎦
∑  

The balanced random imputation method consists of selecting the imputed values *
iy so that 

the following equations are approximately satisfied 

                      * ˆ(1 )1( ) (1 ) for any 1, , .k
i i i i i i

i s i s
w r y k w r k Kϕ

∈ ∈

− = = − =∑ ∑                      (5.5) 

Now consider the mn K×  table 
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 1 … k  … K  

1 11 11( , )ψ e  … 1 1( , )k kψ e  … 1 1( , )K Kψ e  

      

i  1 1( , )i iψ e  … ( , )ik ikψ e  … ( , )iK iKψ e  

      

mn  1 1( , )
m mn nψ e  … ( , )

m mn k n kψ e … ( , )
m mn K n Kψ e  

 

where each cell  ( , )i k  is given the vector value ike which is the column vector of size K  with 

1 on row k  and 0  elsewhere, and the probability ˆ k
ik iψ ϕ= .  A balanced random imputation 

such that equations (5.5) are approximately respected may be handled with the Cube method 

presented in the Appendix, with inclusion probabilities ikψ  and the vector 

( )0 1( ) , , , ,mn
ik ik ik ikx x

′
′=x x  where 0

ik i ik ikwψ=x e  and 
*

*
i
ik ik i i

x ψ δ= for * 1, , ,mi n=  where * 1
i i
δ =  

if *i i= and * 0,
i i
δ =  otherwise. 

 

6. SIMULATION STUDY 

 

We conducted a simulation study to investigate on the performance of the proposed balanced 

random imputation method. We used a population of size 10,000N =  consisting of a data file 

that was extracted from a sample collected between January 2005 and December 2005 for the 

Canadian Community Health Survey (CCHS), which is a cross-sectional survey that collects 

information related to health status, health care utilization and health determinants for the 

Canadian population.  We considered two variables of interest: the self reported weight in 

kilograms of an individual ( )1y , which is a continuous variable, and the self reported 
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presence of asthma  ( )2y  such that 2 1y =  if the individual reported suffering from asthma 

and 2 0,y =  otherwise. The population was stratified into the Canadian provinces, which led 

to the creation of 11 strata.  

 

For the variable 1,y  our objective was to estimate two parameters: (i) its population mean, 

1 1
1

i
i U

Y y
N ∈

= ∑ and (ii) its finite population distribution function, ( )1 1
1( ) ,N i

i U
F t y t

N ∈

= ≤∑1  for 

different values of t  (0.05; 0.25; 0.5; 0.75; 0.95).  For the variable 2 ,y  our objective was to 

estimate the proportion of individuals in the population that reported suffering from asthma, 

2 2
1 .i

i U
Y y

N ∈

= ∑  

 

From the population, we selected 1000 stratified simple random samples without replacement 

of size n = 500 using proportional allocation. That is, the sample size hn  in stratum h was set 

to 500 ,h
h

Nn
N

=  where hN denotes the number of individual in stratum h, 1,...,8.h =  From 

each generated sample, we generated nonresponse to the variables 1y  and 2y  according to a 

uniform response mechanism within strata. That is, the probability of response within strata h, 

,hp  is constant but varies across strata. Also, units within a stratum respond independently 

from one another. Table 6.1 shows useful quantities for the CCHS population. 

 

The response indicators ir  for ,i s∈  were then generated independently 1000 times from a 

Bernoulli distribution with parameter ,hp  1,...,11,h =  which led to 1000 sets of respondents. 

In each sample containing respondents and nonrespondents, imputation was performed within 

each stratum independently. In other words, the strata were used as imputation classes. Within 
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each class, we performed the imputations according to three methods: (i) mean imputation 

within classes (MI), (ii) random hot-deck within classes (RHDI) and (iii) random balanced 

imputation (RBALI).  Note that RHDI can be viewed as MI with added residuals. The two 

latter methods are described in section 2. 

 

Table 6.1: Parameters used for the CCHS population 

Strata 1 2 3 4 5 6 7 8 9 10 11 

hN  641 433 693 689 1435 1919 794 845 992 1096 463 

hn  32 22 35 34 72 96 40 42 50 55 22 

hp  0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 

 

 

As a measure of the bias of an estimator θ̂  of a parameter ,θ  we used the Monte Carlo 

Percent Relative Bias ( )RB  given by 

                                                     ( ) ( )ˆˆ 100,
MCE

RB
θ θ

θ
θ

−
= ×                                            (6.1) 

 

where ( )
1000

( )

1

1ˆ ˆ ,
1000

r
MC

r

E θ θ
=

= ∑  and ( )ˆ rθ  denotes the estimator θ̂  in the r-th sample, 

1,...,1000.r =  As a measure of variability of ˆ,θ  we used the Monte Carlo Mean Square Error 

(MSE) given by 

 

                                                    ( ) ( )
1000 2

( )

1

1ˆ ˆ .
1000

r
MC

r
MSE θ θ θ

=

= −∑                                     (6.2) 

 

Let (MI) (RHDI)ˆ ˆ,θ θ and (RBALI)θ̂  denote the estimator θ̂   under MI, RHDI and RBALI. In order to 

compare the relative stability of the imputed estimators, using (RHDI)θ̂  as the reference, we 

used the following measure: 
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( )

( )
(.)

(RHDI)

ˆ
.

ˆ
MC

MC

MSE
RE

MSE

θ

θ
=                                                             (6.3)    

When 1,Yθ =  we have 1
1

ˆˆˆ ,I
I

YY
N

θ ≡ =  where 1̂IY  is obtained from (2.2) by replacing iy  with 

1iy  for ri s∈  and *
iy  with *

1iy  for mi s∈ .  When 1 ( ),NF tθ =  we have 1
ˆ ˆ ( ),IF tθ ≡  where 1̂ ( )IF t  

is obtained from (4.1) by replacing iy  with 1iy  for ri s∈  and *
iy  with *

1iy  for mi s∈ .  Finally, 

when 2 ,Yθ =  we have 2
2

ˆˆˆ ,I
I

YY
N

θ ≡ =  where 2̂IY  is obtained from (2.2) by replacing iy  with 

2iy  for ri s∈  and *
iy  with *

2iy  for mi s∈ . 

 

Table 6.3 shows the monte carlo percent relative bias (RB) of the imputed estimator and the 

RE, which are obtained from (6.1)-(6.3) by replacing θ̂  with 1
ˆ

IY  and θ  with 1.Y  First, the 

imputed estimator is approximately unbiased in all the scenarios, as expected. In terms of RE, 

results show that (MI)
1
ˆ

IY  has the smallest MSE. This result is not surprising since the 

imputation variance is identically equal to zero in this case. Also, it is clear that (RBALI)
1
ˆ

IY  is 

significantly more efficient than (RDHI)
1
ˆ

IY  with a value of RE equal to 0.82. Finally, (RBALI)
1
ˆ

IY  is 

slightly less efficient than (MI)
1
ˆ

IY . This is due to the fact that the balancing equations needed to 

be relaxed in the last phase of the imputation algorithm in order to end the selection of 

residuals for non-responding units. As a result, equation (2.10) did not to hold exactly and so 

the imputation variance was not entirely eliminated.  

 

Table 6.3: Monte Carlo percent Relative Bias of the imputed estimator and RE 

  MI RHDI RBALI 
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1
ˆ( ) IRB Y  0.01 0.02 0.01 CCHS 

population RE   0.80 1 0.82 

  

 

We now turn to the distribution function, ( )1 .NF t  Table 6.4 shows the RB of the imputed 

estimator and the RE, which are obtained from (6.1)-(6.3) by replacing θ̂  with 1̂ ( )IF t  and θ  

with ( )1 .NF t  As expected, the distribution function under MI is significantly biased. In terms 

of relative bias, both RBALI and RHDI show almost not bias (less than 0.25%), as expected. 

Both imputation methods succeed in preserving the distribution of the variable 1.y  Also, it is 

clear that the imputed estimator under RBALI is more efficient then the corresponding 

estimator under RHDI in all the scenarios. Figure 3 shows that the distribution function is 

preserved under RHDI and RBALI, unlike MI which leads to a considerable distortion of the 

population distribution function. In the latte case, we note the occurrence of a spike at the 

respondent mean. 

 

Table 6.4: Monte Carlo percent Relative Bias of the imputed estimator of the distribution 

function and RE 

 

 

RB  
RE  

( )F t  RHDI  RHDI  RBALI  RBALI  RBALI  

.05  -29.05 0.05 0.05 1.88 0.99 

.25  -29.03 0.18 0.25 9.52 0.90 

.50  -16.30 -0.11 -0.02 11.02 0.90 

.75  8.94 0.03 0.01 7.90 0.87 

.95  1.57 -0.06 -0.05 1.78 0.91 
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Figure 3: Population Distribution Function (PDF) and Monte Carlo Mean of the Estimated  

Distribution Functions (EDF) 

 

 PDF  

  

EDF under MI EDF under RHDI EDF under RBALI 

 

 

Finally, we turn to the binary variable 2.y  Table 7.5 shows the RB of the imputed estimator 

and the RE, which are obtained from (6.1)-(6.3) by replacing θ̂  with 2
ˆ

IY  and θ  with 2.Y  

Here, the results are very similar to those obtained for the variable 1.y …. Note that in 

practice, MI in this context is seldom used because it leads to the creation of impossible 

values in the data file. 
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Table 6.5: Monte Carlo percent Relative Bias of the imputed estimator and RE 

 MI RHDI RBALI 

( )2
ˆ  IRB Y  -0.03 -0.01 -0.02 

RE  0.82 1 0.86 

 

 

7. SUMMARY AND DISCUSSION 

 

In this paper, we have studied the problem of balanced random imputation as a way to 

reduce/eliminate the imputation variance, which is often viewed as a parasitic variance. We 

proposed a general algorithm for selecting the random residuals that was inspired from the 

Cube method proposed by Deville and Tillé (2004) in the context of balanced sampling. The 

proposed algorithm can be applied for both continuous and categorical variables and for any 

sampling design and imputation method. Results from a limited simulation study have shown 

that in all the cases the proposed balanced random imputation method was efficient in 

comparison to the corresponding random imputation method.  

 

If that the balancing constraints are exactly satisfied, the variance of the imputed estimator 

(2.2) can be readily estimated using any variance estimation available; e.g., Rao and Shao 

(1992), Särndal (1992) and Shao and Steel (1999). If the balancing equations are not exactly 

satisified, the Cube method involves a rounding process called the landing phase. In this case, 

correct variance estimation is not straightforward because it involves estimating the variance 

due to the landing phase. This problem is currently under investigation. 

 



 30

In practice, estimates of bivariate parameters such as domain means, regression coefficients 

and coefficients of correlation are often needed. In this case, determining an imputation 

method that preserves the relationships between variables becomes the main challenge. The 

use of balanced imputation to overcome this problem is currently under investigation. 
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APPENDIX : THE CUBE METHOD 

 
Before introducing the different steps of the algorithm, we introduce further notation. The 

population *U  is partitioned into mn  strata * * *
1 , , ,

mi nU U U of equal size. The unit j  in 

stratum *
iU  is associated to the cell ( , )i j , that is, to the couple formed by the i -th non 

respondent and the j -th respondent. The inclusion probability and the value of the vector of 

balancing variables for unit j  in stratum *
iU  are respectively given by ijp  and ijx  (see section 

3). Let 11

11

, , , , m r

m r

n nij

ij n n

A
p p p

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

xxx  be a m rn n× matrix called the matrix of constraints. Then 

the first phase of the imputation algorithm follows these steps. We first initialize with  

(0) .φ φ=  Next, at time 1, ,t T= , repeat the following three steps : 

 

Step 1 :  Generate any vector ( )11( ) ( ), , ( ), , ( ) 0
m rij n nu t u t u t u t

′
= ≠ such that    

(1) ( )u t  is in the kernel of the matrix A   

(2) ( ) 0iju t = if ( 1)ij tφ −  is an integer.  

Step 2 :  Compute *
1 ( )tλ and *

2 ( )tλ the largest values of 1 ( )tλ and 2 ( )tλ  such that  
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10 ( 1) ( ) ( ) 1t t u tφ λ≤ − + ≤ , 

20 ( 1) ( ) ( ) 1t t u tφ λ≤ − − ≤ . 

   Note that *
1 ( ) 0tλ > and *

2 ( ) 0tλ > .  

 Step 3 :  Select 

   
*
1
*
2

( 1) ( ) ( ) with probability ( )
( )

( 1) ( ) ( ) with probability 1 ( )
t t u t q t

t
t t u t q t

φ λ
φ

φ λ
⎧ − +

= ⎨
− − −⎩

 

   where ( )* * *
2 1 2( ) ( ) ( ) ( )q t t t tλ λ λ= + .  

 
The choice of ( )u t  in Step 1 implies that at each step of the former algorithm, the balancing 

equations remain exactly respected. The choice of *
1 ( )tλ  and *

2 ( )tλ  in Step 2 imply that the 

vector ( )tφ  has one more integer component than ( 1)tφ − . This means that at each step, one 

more unit is either sampled or definitely rejected. Finally, the random choice in Step 3 implies 

that the inclusion probabilities are also exactly respected. The algorithm stops when it is no 

more possible to select a vector ( )u t such that (1) and (2) are satisfied. T  denotes the time 

when the flight phase stops. Let * ( )Tφ φ= , and r  denote the number of non integer 

components in *φ . Theorem 8.1 in Tillé (2001, p.??) implies that r is no greater than the 

number of balancing variables, which equals 1.mn +  We show below that r  is in fact no 

greater than 2 . 

 
First, suppose that there exists a stratum *

iU  in which the vector *φ  has at least 3  non-integer 

components. We assume without loss of generality that this stratum is *
1U , and that *

11φ , *
12φ  

and *
13φ  are not integer. Let  
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00 0
1311 12

11 12 13

1 1 1 1
0 0 0

xx x
p p p

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
be the square sub-matrix given by the first three lines and the first three columns in A . 1A  is 

obviously singular, and if we denote 3 11 12 13( , , ) 'v v v v=  for a vector in the kernel of 1A , 3v  may 

be filled with zeros to form a vector v  in the kernel of A such that ( ) 0ijv t = if ( )ij Tφ  is an 

integer, which is impossible. Consequently, each stratum *
iU has at most two non-integer 

components.  

 
Now, suppose that there exists at least two strata *

iU  and *
kU  in which the vector *φ  has non-

integer components. We assume without loss of generality that such strata are given by *
1U  

and *
2U , and that *

11φ , *
12φ , *

21φ , *
22φ  are not integer. Let  

0 0 0 0
11 12 21 22

11 12 21 22

2 1 1 0 0
0 0 1 1
0 0 0 0

x x x x
p p p p

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
be the square sub-matrix given by the first four lines and columns 1, 2 , 1mn +  and 2mn +  ,  

in A . 2A  is obviously singular, and if we denote 4 11 12 21 22( , , , ) 'v v v v v=  for a vector in the 

kernel of 2A , 4v  may be filled with zeros to form a vector w  in the kernel of A such that 

( ) 0ijv t = if ( )ij Tφ  is an integer, which is impossible.  

 

Consequently, there is at most one stratum *
iU which has non-integer components, and this 

stratum has no more than two non-integer components. At the end of the first phase, this is no 
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more possible for the balancing on variable 0x to hold exactly. In a second phase, this 

condition is suppressed, and a random choice is made between the two (possibly) remaining 

units for the inclusion probabilities to remain exactly respected and the condition of fixed size 

in each stratum to hold exactly. 


