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Abstract

This paper considers a new method for dealing with endogenous selection. When

selection depends directly on the dependent variable, the usual instrumental strategy

based on the independence between the outcome and the instruments is likely to fail.

On the other hand, it may be possible in this case to find an instrument which is

independent of the selection variable, conditional on the outcome. This strategy may

be particularly suitable for nonignorable nonresponse, binary models with missing

covariates or Roy models with unobserved sector. Nonparametric identification of

the joint distribution of variables is obtained under completeness, a rank condition

which has been used recently in several nonparametric instrumental problems. Even

if the conditional independence between the instrument and the selection fails, sharp

bounds on parameters of interest can be obtained under weaker monotonicity con-

ditions. Apart from identification, nonparametric and parametric estimation is also

considered. Eventually, the method is applied to estimate the effect of grade retention

in French primary schools.
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Introduction

Missing observations are very common in micro data, either because of selection, nonre-
sponse or simply because variables such as counterfactual cannot be observed. Ignoring
this issue by making inference on the observed population generally leads to inconsistent
estimators. Moreover, without additional assumptions, only bounds on the parameters of
interest can be identified (see e.g. [36]). Several approaches have been followed to retrieve
point identification. The first is to suppose independence between response and variables
of interest conditional on observed covariates. This is the so-called missing at random
hypothesis (see e.g. [33]), or the unconfoundedness assumption in the treatment effect lit-
erature (see for instance [26]). However, this assumption is often considered too stringent
because it rules out any correlation between the selection and outcome variables. When
such endogenous selection arises, the common practice is to use instruments which deter-
mines selection but not outcomes (see e.g. [18] on tobit models, [1] or [19] on treatment
effects). However, this assumption does not point identify the distribution of the outcome
in general (see [36]). Moreover, it may be difficult to find such instruments. When selection
depends heavily on the dependent variable, in particular, the assumption of conditional
independence is difficult to maintain. A third approach relies on functional restrictions
rather than exclusion restrictions. For instance, [5] obtains identification at the infinity by
imposing a linear structure. Lastly, using an appealing composite strategy, [32] obtained
identification under the existence of a special regressor which is strongly exogenous (i.e.,
conditionally independent of the errors of the selection model), a large support condition
and restrictions on the probability of selection.1

In this paper, another instrumental strategy for solving endogenous selection is considered.
Nonparametric identification is based on independence between the instruments and the
selection variable, conditional on the outcome and possible on other explanatory variables.
This assumption has been also used in the framework of nonignorable nonresponse by [6],
[21], [42] and [43].2 Apart from nonresponse, this assumption may be particularly suit-
able when selection is directly driven by the dependent variable. Consider for instance a
variable which is observed only if it exceeds an unobserved truncation. Finding an instru-
ment which only affects selection is impossible if this truncation variable is purely random.

1This probability must tend to zero or one when the special regressor tends to infinity.
2The difference with these papers is that they focus mainly on parametric and semiparametric estimation

issues, whereas the emphasis is put on nonparametric identification here. [6] and [43] propose sufficient
conditions for identification in parametric models, and [21] studies identification when the support of the
outcome is finite. We extend his result to a general situation here.
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Instead, any variable which affects the dependent variable will satisfy the exclusion restric-
tion considered here. Other examples where this assumption can be useful include Roy
models with unobserved sector, one stratum response based samples or truncated count
data models. As in usual instrumental regressions, a rank condition between instruments
and outcomes is also required to achieve identification. This condition is stated in terms of
completeness, and was already considered in several nonparametric instrumental problems
(see, among others, [3], [25] and [41]). Under this hypothesis and the conditional inde-
pendence assumption, the joint distribution of the data is identified nonparametrically.3

The key point is that it suffices, in this framework, to recover the probability of selection
conditional on the outcome. This is similar to the unconfoundedness situation, where the
problem reduces to identifying the propensity score. However, whereas the identification
of the propensity score is trivial in the latter case, the conditional probability is harder
to retrieve in the former. I show that this function satisfies an integral inverse problem,
whose solution is unique under the completeness condition.

If only some moments of the instrument are used, and not its full distribution, the distri-
bution of the data can still be recovered under a parametric restriction on the selection
model. This result may be useful when only aggregated information on the instruments
are available, or for the ease of estimation. The idea of using moments of instruments to
deal with nonresponse has also been applied in survey sampling (see [11]). It is also related
to the literature on auxiliary information, which has been developed either for efficiency
reasons (see [20] or [27]) or, as here, to provide identification (see [20] and [40]). Our
parametric framework extends Nevo’s result to the case of endogenous selection.

The fact that the identification strategy relies on an exclusion restriction may seem restric-
tive in some applications, and is not needed in Lewbel’s framework for instance.4 However,
and contrary to the missing at random assumption for instance, this condition is testable.
Furthermore, the method appears to be fruitful even if the exclusion restriction fails. The
intuition behind is that this condition is the extreme opposite of unconfoundedness. In-
deed, selection depends only on the outcome in the first case and only on covariates in
the second one. In between, if selection depends monotonically on both the outcome and

3In particular, the marginal effect of the instrument on the outcome, or the effet of the selection variable
on the outcome, are identified.

4On the other hand, the existence of a special regressor, which may be difficult to find in practice,
is not needed here. Indeed, the instrument may be continuous or discrete, the completeness condition
only implying that its support has the same number of or more elements than the one of the outcome.
Moreover, no restriction is imposed on the conditional probability of selection, except, as usual, that it
should be positive everywhere.
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a given instrument, I show that the identifying equations underlying the two assumptions
provide sharp and finite bounds on parameters of the outcome. Thus, even if the depen-
dent variable is unbounded, one can obtain compact interval on parameters of interest.
This result is similar to the one of [37] (see their proposition 2, corollary 2) but within
a slightly different framework and under other assumptions. Instead of their monotone
treatment response condition, which states that outcomes increase with the treatment, the
result relies on the existence of an instrument which affects selection in a monotonic way.
Such a condition is weak and is likely to be satisfied in many contexts, including the use of
data with nonignorable nonresponse and treatment effects estimation. In this latter case
in particular, the result should be of practical importance as it enables to go beyond the
standard routine of computing matching estimators as point estimates of these effects.

Apart from identification issues, estimation of the model is also considered. Standard
GMM can be used in the parametric case or in the nonparametric one with a discrete
outcome. In a nonparametric setting with a continuous dependent variable, the parameter
is functional and must be estimated through an infinite number of moment conditions.
Estimation is based on a Tikhonov regularization method, as in [16] or [4]. The estimator
of the conditional probability of selection is shown to be consistent. This estimator enables
in turn to make valid inference on the whole population, by an inverse probability weighting
procedure, in a similar fashion to [20], [24], [40] or [45].

Lastly, the method is used to estimate the effect in terms of test achievement of grade
retention in fifth grade in France. Besides the usual counterfactual problem, identification
of this effect is complicated by the fact that French students only take standardized tests at
the beginning of the third and sixth grades. Thus, the ability at the end of the fifth grade,
which is one of the main factor of grade retention, is observed for promoted students,
thanks to the sixth test, but not for retained students. Consequently, the problem fits
within our framework. Using the third grade test score as an instrument, sharp bounds
on the effects of grade retention are computed. Overall, the short term impact of grade
retention seems more likely to be positive. This result is in line with the one of [29] for
third graders in Chicago.

The rest of the paper is structured as follows. Section one is devoted to identification issues.
Estimation methods are described in section two. The application to grade retention is
presented in section three.5

5All proofs of the results are available in the CREST working paper.
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1 Identification

1.1 The setting and main result

Let D, Y and Z denote respectively the selection dummy variable, the dependent variable,
and the instruments. The first assumptions set the selection problem.

Assumption 1 We observe D and (Y, Z) when D = 1. Y is not observed when D = 0.

Assumption 2 The distribution of Z is identified.

Assumptions 1 and 2 are satisfied when Y alone is missing, as in selection problems or
item nonresponse. It also covers unit nonresponse where (Y, Z) are missing when D = 0.
In this latter situation, auxiliary information on Z is needed to satisfy assumption 2. This
information typically stems from a refreshment sample, censuses or administrative data. In
these two latter cases, supposing the identifiability of the whole distribution of Z may be
overly strong, and we will see in Subsection 1.3 that it can be weakened to the knowledge
of moments of Z, at the price of imposing parametric restrictions.

Assumptions 1 and 2 alone do not enable to point identify the distribution of (D, Y, Z).
More structure on the dependence between these variables is needed. If selection directly
depends on Y , the usual assumption of exogenous selection will fail, and it may be difficult
to find an instrument which affects selection but not the outcome. On the other hand, we
may find variables which are related to Y but not to D. More precisely, we assume here
the following condition:6

Assumption 3 D ⊥⊥ Z |Y .

This assumption has also been made by [6], [43], [21] and [42] in the framework of non-
response. It is also a particular case of assumption (41) of [35]. The condition can be
interpreted as follows. The selection equation depends on Y , which is missing when D = 0,
and thus cannot be identified with the data alone. On the other hand, if an instrument
which affects Y but not directly D is available, one can identify this selection equation, in
a similar fashion to usual instrumental regressions. For instance, suppose that (D, Y, Z)

follow the nonparametric system  Y = ϕ (Z, ε)

D = ψ(Y, η).
(1.1)

6We could refine this assumption by supposing that D ⊥⊥ Z |Y,X where X denote covariates whose
distribution is identified. All the subsequent analysis would then hold conditional on X. We do not
introduce such covariates until Subsection 1.4 for the ease of notations.
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In this setting, we have the following result.

Proposition 1.1 Suppose that system (1.1) holds with η ⊥⊥ (Z, ε). Then assumption 3
holds.

By letting ψ(y, u) = 1{u ≤ P (D = 1|Y = y)}, we can suppose without loss of generality
that η is independent of Y .7 The exclusion restriction amounts to reinforce this into a
conditional independence between η and (Y, Z).

As indicated previously, a dependence condition between Y and Z is required to achieve
identification of the model. I rely in the sequel on a completeness condition. Let B denotes
the set of real functions h such that h(Y ) is bounded below almost surely and h ∈ L1

Y ,
where, for any random variable T and any q > 0, Lq

T is the space of functions g satisfying
E(|g(T )|q) < +∞.

Assumption 4 Y is B-complete for Z, that is for all g ∈ B,(
E(g(Y )|Z) = 0 a.s.

)
=⇒

(
g(Y ) = 0 a.s.

)
. (1.2)

Assumption 4 is weaker than the usual completeness condition, for which condition (1.2)
must hold for any g ∈ L1

Y , but stronger than bounded completeness, for which condition
(1.2) must hold for bounded functions h only (see e.g. [39] for a discussion on the difference
between completeness and bounded completeness). The standard completeness condition
has been used in the study of nonparametric instrumental regression under additive sepa-
rability (see [41], [10]) and in nonclassical measurement error problems (see [7] and [25]),8

while the bounded completeness condition has been used for instance by [3].

Completeness can be easily characterized when Y and Z have finite supports. Indeed, let-
ting (y1, ..., ys) and (z1, ..., zt) denote these supports, this assumption amounts to rank(M) =

s, where M is the matrix of typical element P (Y = yi|Z = zj) (see [41]). Hence, the sup-
port of Z must be at least as rich as that of Y (t ≥ s) and the dependence between the two
variables must be strong enough for s distinct conditional distributions P (Y = .|Z = zj)

to exist. In this case, completeness is equivalent to bounded completeness. Completeness
or bounded completeness are much more difficult to characterize when the support of Y or
Z is infinite, and only sufficient conditions have been obtained until now. Both hold when

7In this case, ψ is not necessarily structural.
8Indeed, assumption 2.4 of [7] and assumption 2 of [25] are equivalent, under technical conditions, to a

completeness condition.
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the density of Y conditional on Z belongs to an exponential family (see [41]). We show
here that assumption 4 is also satisfied under an additive decomposition, a large support
assumption and technical restrictions on ε in system (1.1).

Proposition 1.2 Consider system (1.1) with Y ∈ R and suppose that

1. (additive decomposition) ϕ(z, ε) = µ(ν(z) + ε) and Z ⊥⊥ ε.

2. (large support) The measure of ν(Z) is continuous with respect to the Lebesgue mea-
sure and the support of ν(Z) is R almost surely.

3. (regularity conditions on ε) The distribution of ε admits a continuous density fε with
respect to the Lebesgue measure. Moreover, fε(0) > 0 and there exists α > 2 such
that t 7→ tαfε(t) is bounded. Lastly, the conditional characteristic function of ε does
not vanish and is infinitely often differentiable in R\A for some finite set A.

Then Y is B−complete for Z.

The additive decomposition and the large support condition are identical to the assump-
tions A1 and A2 made by [12] to study completeness and bounded completeness.9 The reg-
ularity conditions on ε are satisfied for many distributions such as the normal, the student
with degrees of freedom greater than one10 or the stable distributions with characteristic
exponent greater than one. Interestingly, these regularity conditions are hardly stronger
than the one needed to achieve bounded completeness, namely, the zero freeness of the
conditional characteristic function of ε (see [12], Theorem 2.1). Hence, in this framework
at least, B-completeness appears to be almost equivalent to bounded completeness.

Because identification is based on inverse probability weighted moment conditions, we
also suppose that the conditional probability P (Y ) ≡ P (D = 1|Y ) is positive almost
surely. This assumption is similar to the common support condition in the treatment
effects literature. It does not hold if D is a deterministic function of Y , as in truncation

9The additive decomposition considered here encompasses many nonlinear models, beyond the non-
parametric additive models for which µ(x) = x. Usual ordered choice models correspond to µ(x) =∑K

k=1 k1]αk−1;αk](x) (where 1A(x) = 1 if x ∈ A, 0 otherwise) for some given thresholds α0 = −∞ <

α1 < ... < αK = +∞. Simple tobit models correspond to µ(x) = max(0, x). Duration models like the
accelerated failure time model (for which µ(x) = exp(x)) or the proportional hazard model (for which µ

is an unknown increasing function and −ε is distributed according to a Gompertz distribution) also fit in
this framework.

10See e.g. [38] for a proof that the conditions on the characteristic function of student distributions are
indeed satisfied.
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models for instance where D = 1{Y ≥ s}, s denoting a fixed threshold. It also fails for
random truncation models D = 1{Y ≥ η} if η is strictly greater than the infimum of
Y . This would be the case, in example 2 below for instance, if the reservation wage η of
individuals is always greater than the lowest potential wage Y .

Assumption 5 P (Y ) > 0 almost surely.

Theorem 1.3 Suppose that assumptions 1-5 hold. Then the distribution of (D, Y, Z) is
identified.

Basically, the result stems from the fact that under assumption 3 and 4, the equation in Q

E

(
D

Q(Y )

∣∣∣∣Z) = 1 (1.3)

admits a unique solution, P . Identification of P follows because the left term is identified
for any given Q. Then it is easy to show that the knowledge of P enables to identify the
distribution of (D, Y, Z). We now present several potential applications of this framework.

Example 1: nonignorable nonresponse

In this case, an outcome Y is observed only if the individual answers to the survey or to a
given question in the questionnaire (D = 1). The aim is to recover the full distribution of
Y , given that nonresponse directly depends on Y . For instance, consider the variable Y = 1

if the individual has used drugs at least once during the month, 0 otherwise. Accepting to
answer to the question “have you used drugs at least once during the last month?” is likely
to depend on the answer Y itself. The method can be applied if an instrument affects Y
but not directly D. In the drugs example, local drug prices affect the fact of using drugs
but are unlikely to play directly on response on drug use. Note that in this example where
Y is binary, the completeness condition is easy to check, since it is equivalent to a nonzero
correlation between Y and the instrument.

Example 2: Roy model with an unobserved sector

In this example, Y (resp. η) denotes the wage an individual can obtain in sector 1 (resp. in
sector 0). The individual chooses the sector that provides him with the better wage. Y is
observed if sector 1 is chosen but η is never observed. Thus, in this case D = 1{Y ≥ η}.11

For instance, Y may represent the potential wage of an individual, which is observed only
11Following the previous discussion, assumption 5 will be satisfied if η can be lower than any value of

Y , with a positive probability.
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if the person enters the labor market, while η denotes his reservation wage. The aim is
to recover the distribution of Y , or the effects of covariates X on Y . The usual exclusion
restriction requires the existence a variable which affects η but not Y . On the other hand,
the strategy above can be applied if there is an instrument Z which affects the potential
wage but not directly the reservation wage, so that η is independent of Z conditional on Y
(or conditional on (X, Y ) if one adds covariates). A possible example of such an instrument
is the local unemployment rate (see [17], for evidence that the local unemployment rate
does not affect the reservation wage).12

Example 3: Sample from one response stratum

Suppose that a researcher seeks to study the effects of Y on a binary variable D, but Y is
observed only for the stratum D = 1.13 Our instrumental strategy relies on the existence
of an instrument Z which affects Y but not D directly, and whose distribution is identified.
Suppose for instance that one wants to study the efficiency of vaccination in a developing
country, but data on ill people only are available, and the vaccination rate in the population
is unknown. In this case D is the dummy variable of being ill, while Y is the dummy of
being vaccinated. If there has been an important vaccination campaign after a given date,
one can use the dummy of being born after this date as an instrument.14 Once more, the
completeness condition is satisfied as soon as the correlation between Y and the instrument
is not zero.

This example also covers truncated count data models. In this case, the aim is to recover
the effect of Y on an integer valued variable N , given that Y is observed only when N > 0.15

Consider for instance the estimation of the price elasticity of a good through the use of
retail data.16 If we observe the quantities sold N and the sales N × Y , but not directly
prices Y , then these prices can be deduced only when the quantities sold are positive. The

12No statistical test for completeness conditions has been developed yet in the case where Y is continuous.
Thus, assumption 4 has to be maintained in this example. However, one can test implications of assumption
4 by checking for instance that E(Y |Z) is not a constant function.

13In this case, Y is a covariate rather than an outcome. The notation Y is maintained however to ensure
consistency with assumption 1.

14If age is a factor of the disease as well, one can use only individuals born just before and just after the
beginning of the campaign, as in the regression-discontinuity approach.

15Hence, D = 1{N > 0} here and recovering P (N = k|Y ) for all k ∈ N amounts to identify P (D = 1|Y ).
Note that this example differs from the simple truncation model D = 1{Y ≥ s} described above. In
particular, assumption 5 will hold as soon as P (N = 0|Y ) < 1 almost surely.

16As discussed by [15], truncated counts arise more generally with data from surveys which ask partic-
ipants about their number of participations, or administrative records where inclusion in the database is
predicated on having engaged in the activity of interest.
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framework can be applied if there is an instrument whose distribution is identified and
which affects prices but not directly the demand. Production cost shifters such as prices
of the inputs may be good candidates for that.

1.2 Testability

In some contexts, the conditional independence assumption 3 may seem overly strong. An
interesting feature of this assumption, yet, is that it is refutable, contrary to the usual
missing at random assumption. Firstly, equation (1.3) may have no solution. This is
especially clear when (Y, Z) has a finite support. If indeed Y and Z take respectively
m1 and m2 distinct values, with m2 > m1, (1.3) can be written as a system of m2 linear
equations with m1 unknown parameters, so that the model is overidentified.

But even when m1 = m2, the model is testable since the solution Q of equation (1.3) must
be a positive probability, i.e. Q(y) ∈]0, 1] for all y.17 As an illustration, consider a simple
case without covariates and such that (Y, Z) ∈ {0, 1}2. Let p(y, z) = P (D = 1, Y = y|Z =

z), α = 1/Q(0) and β = 1/Q(1). Then, as soon as p(0, 0)p(1, 1) 6= p(0, 1)p(1, 0) (that is to
say under the completeness condition), equation (1.3) is equivalent to

α =
p(1, 1)− p(1, 0)

p(0, 0)p(1, 1)− p(0, 1)p(1, 0)

β =
p(0, 0)− p(0, 1)

p(0, 0)p(1, 1)− p(0, 1)p(1, 0)
.

Hence, when p(1, 1)−p(1, 0) and p(0, 0)−p(0, 1) have opposite signs, for instance, assump-
tion 3 is rejected. Basically, this happens when z 7→ P (D = 1|Y = y, Z = z) varies too
much compared to z 7→ P (Y = y|Z = z).

Now, when a solution Q ∈]0, 1] of equation (1.3) does exist, one can expect that assump-
tion 3 cannot be rejected, since intuitively, this equation makes use of all the available
information. Theorem 1.4 formalizes this idea.

Theorem 1.4 Suppose that assumption 1, 2 and 5 hold. Then assumption 3 can be rejected
if and only if there exists no solution Q of equation (1.3) which belongs to ]0, 1].

When Y is discrete and takes values in {y1, ..., yk}, a statistical test of assumption 3,
under the maintained assumption 4, can be developed as follows. First, we can estime

17If the completeness condition does not hold, Q may not be unique. Then at least one of the solution
must belong to ]0, 1].
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f = 1/P by GMM using (1.3). Then testing assumption 3 amounts to make a test of the
multiple inequality constraints f(yj) ≥ 1 for j = 1...k (see e.g. [14], section 21.4, for the
implementation of such tests). The situation is more involved when Y is continuous. Under
assumptions 1-5 and additional technical conditions, a consistent nonparametric estimator
f̂ of f is developed in Subsection 2.2. This estimator is constraint to belong to [1,M ] with
M > 1. It should be possible to build a consistent, unconstrained estimator f̃ of f . Then,
under the maintained assumptions 1, 2, 4 and 5, a test of assumption 3 could be based on
the distance between f̂ and f̃ . Indeed, under assumption 3, f̃(y) should be greater than
one for most values of y, so the distance between the two should be close to zero.18

1.3 Set identification without conditional independence

A second interesting feature of equation (1.3) is that it provides an informative bound on
parameters of interest under monotonicity conditions, which are far weaker than the con-
ditional independence condition of assumption 3. In the sequel, we let Z̃ denote variables
which may be different or not from Z and whose distribution is also identified. Besides,
because monotonicity conditions are meaningful in ordered sets only, we restrict to the
case where (Y, Z) ∈ R2. We replace assumption 3 by the following ones.

Assumption 3’ Almost surely, z 7→ P (D = 1|Y, Z = z) is increasing.

Assumption 6 Almost surely, y 7→ P (D = 1|Y = y, Z̃) is increasing.

Assumption 3’ weakens the conditional independence between selection and instrument set
in assumption 3 into a monotone dependence. It is also a variant of the usual instrumental
condition which supposes that the instrument affects the probability of selection but is
independent of the outcome. Here, the effect on the probability of selection is restricted
to be monotonic, but no independence condition between Y and Z is needed. Assumption
6 weakens the missing at random hypothesis of independence between selection and out-
come into a monotone dependence. This assumption is very similar to the mean missing
monotonicity assumption considered by [36] (p. 28), and actually implies it, as part a) of
Theorem 1.5 shows.

18The critical region of such a test would depend on the asymptotic distribution of (f̂ , f̃), whose deriva-
tion is beyond the scope of the paper.
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Theorem 1.5 below provides bounds on parameters of the form E(h(Y )) for h ∈ H1
Y or

h ∈ H2
Y Z , where we let

H1
T = {h ∈ L1

T and h is increasing} (T = Y or Z),

H2
Y Z = {h ∈ L1

Y /∃h̃ ∈ H1
Z/h(Y ) = E(h̃(Z)|D = 1, Y )}.

The set H1
Y includes, among others, functions of the form h(y) = λy with λ > 0 and

indicator functions hu(y) = 1{y ≥ u}, so that parameters of the form E(h(Y )), h ∈ H1
Y ,

include the survival function of Y at each point. The set H2
Y Z is more abstract. In an

informal way, H2
Y Z will increase as the dependence between Y and Z becomes stronger. As

a simple illustration, this set only includes constant function when Y and Z are independent
(conditional on D = 1) but is equal to H1

Y when Y = Z. More formally, H2
Y Z is a subset of

the range of the conditional expectation operator g 7→ (y 7→ E(g(Z)|D = 1, Y = y)), which
itself is linked to the null space of this operator. Indeed, when (Y, Z) has finite support,
the dimension of the range will increase as the dimension of the null space decreases. Thus,
at least in finite dimension, H2

Y Z will be maximal if the conditional expectation operator
is injective, that is to say under a completeness condition on Y and Z.19

It seems difficult to test formally that h ∈ H2
Y Z for a given, increasing, function h. On the

other hand, we can test the stronger condition:

E(Z|D = 1, Y ) = α+ βh(Y ), β > 0 (1.4)

Test of such functional forms are described for instance by [46] (Subsection 4.2).

We suppose in the following that equation (1.3) admits a solution, and, as in the previous
subsection, we let Q denote such a solution. More precisely, if the constant function
P (D = 1) is a solution, we let Q(Y ) = P (D = 1) but otherwise Q can be any of the
solutions. We do not impose it neither to lie in ]0, 1] nor to be unique, so that cases where
the completeness condition 4 fails can also be handled.

Theorem 1.5 Suppose that P (D = 1) > 0 and assumptions 1 and 2 hold for Z and Z̃.
Then:
a) Under assumption 6, E [h(Y )] ≤ E

[
E(h(Y )|Z̃,D = 1)

]
for all h ∈ H1

Y . Moreover, this
upper bound is sharp ;
b) Under assumptions 3’, E [Dh(Y )/Q(Y )] ≤ E [h(Y )] for all function h ∈ H2

Y Z. More-
over, this lower bound is sharp provided that at least one solution Q lies in ]0; 1].

19If (Y,Z) has infinite support and the conditional expectation operator is injective, one can show that
the dimension of H2

Y Z is infinite.
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c) For all function h ∈ L1
Y , these three expectations are equal when D ⊥⊥ (Y, Z, Z̃) or when

Z = Z̃ = Y .

Part a) of Theorem 1.5 is not specific to the methodology developed here, and is rather
straightforward. Part b), on the other hand, shows that the moment condition used here
leads to a sharp lower bound on this parameter. This lower bound does not depend on the
choice of the solution Q of equation (1.3), so that no completeness condition is required.
The bound also holds even if no solution Q lies in ]0; 1]. In this case however, the bound
may not be sharp because one could exploit the fact that the conditional independence
assumption 3 is rejected by the data.

An important consequence of Theorem 1.5 is that for all functions h ∈ H1
Y ∩ H2

Y Z , we
can obtain a compact interval on E(h(Y )). This is so even if h(Y ) is unbounded. In this
sense, the result is similar to proposition 2, corollary 2 of [37], under a different set of
assumptions. In particular, we do not rely on the monotone treatment response condition,
which is difficult to adapt to the context of selection models or nonresponse. Moreover, the
monotone treatment response assumption can be strong in the context of treatment effects.
In the Roy model with an unobserved sector developed in example 2, it asserts that almost
surely, Y1 ≥ Y0 (or Y0 ≥ Y1), so that only one sector would be chosen at equilibrium, a
rather unrealistic situation. Instead of this condition, assumption 3’ supposes the existence
of an instrument such that the probability of selection increases with this instrument. This
assumption is rather weak and should be satisfied in many contexts, including treatment
effects estimation or estimation of parameters with nonignorable missing data. In example
2, one could use standard instruments such as non-wage income or the number of children
for instance.

As part c) shows, the interval can be reduced to a point if D is fully missing at random.
Hence, the length of the interval can be interpreted as a measure of the severity of the selec-
tion problem. Because the interval is also reduced to a point when Z = Z̃ = Y , its length
also reflects the quality of the chosen instruments. As the dependence between (Z, Z̃) and
Y increases, the knowledge of the distribution of the instruments enables to better predict
parameters of the distribution of Y . Besides, the upper (resp. lower) inequality turns into
an equalities whenever Y ⊥⊥ D|Z̃ (resp. Z ⊥⊥ D|Y ). Hence, Z and Z̃ must be chosen
according to different logics. Z̃ intends to reduce selection on inobservables correlated with
the outcome, whereas Z should be as independent of the selection (conditional on Y ) as
possible.
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As noted before, H2
Y Z increases as the dependence between Y and Z becomes stronger.

Hence, the quality of the instrument also matters for the range of applicability of the lower
bound. If it seems difficult, without further restrictions, to describe the set H1

Y ∩H2
Y Z of

functions h such that an interval can be built on E [h(Y )], this set will contain at least all
functions h(y) = λy with λ > 0 under the testable linear condition that E(Z|D = 1, Y ) =

α + βY (with β > 0). In this case in particular, E[Y ] can be bounded below and above.
Besides, if Y and Z exhibit a positive dependence, the following proposition states that
the set H1

Y ∩H2
Y Z will be equal to H2

Y Z .

Proposition 1.6 Suppose that for all z, y 7→ FZ|Y =y,D=1(z) is decreasing. Then H2
Y Z ⊂

H1
Y .

1.4 Parametric identification

Nonparametric identification stems from the uniqueness of a functional equation. However,
one may be reluctant to use nonparametric estimators in practice, because of the curse
of dimensionality for instance. Furthermore, assumption 2 may be too strong in some
circumstances. Suppose for instance that instruments are observed only when D = 1 (as
with unit nonresponse or attrition in a panel), but auxiliary information is available on
these instruments. This auxiliary information may however not be sufficient to identify
the full distribution of Z. If Z is multivariate and its different components are observed
through different sources which cannot be matched, only the marginal distributions will
be identified. If the instruments are measured with a zero mean error in these auxiliary
data, only E(Z) can be recovered.

In such situations, assumption 2 fails but intuitively, information on Z can provide identi-
fication, at least in a parametric setting. Theorem 1.5 gives a rigorous treatment to this
idea. It generalizes the framework of [40] to the case where Y 6= Z. It is also very similar
to the theory of generalized calibration developed by [11] in a survey sampling framework
to handle nonignorable nonresponse with instruments. [11], however, does not consider the
issue of identification of P .

As we consider a parametric framework here, we add explicitly covariates X. In the sequel,
we suppose that V = (X ′, Y ′)′ ∈ Rp and W = (X ′, Z ′)′ ∈ Rq. The identification result is
based on the following assumptions.

Assumption 2’ E(W ) is known. Moreover, P (D = 1|V ) = F (V ′β0) where F is a known,
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differentiable and strictly increasing function from R to ]0, 1[, and V is almost surely lin-
early independent conditional on D = 1.

Assumption 3’ D ⊥⊥ Z|V .

Assumption 4’ rank(E(DWV ′F ′(V ′β0)/F
2(V ′β0))) = p.

Assumption 4” E(Z|D = 1, V ) = Γ1X + Γ2Y where Γ2 is full rank.

Assumption 2’ weakens assumption 2 on data availability, at the price of imposing a para-
metric restriction on P . The condition P (D = 1|V ) = F (V ′β0) with a known F is satisfied
for instance if the selection equation is a logit or probit model. Like assumption 4 in the
nonparametric setting, assumption 4’ is the rank condition. As usually, this condition im-
plies that q ≥ p. Lastly, assumption 4” is a particular case of assumption 4’, which restricts
the nonparametric regression of Z on Y to a linear form.

Theorem 1.7 Suppose that assumptions 1, 2’ and 3’ are satisfied. then
a) β0 is locally identified if and only if assumption 4’ holds.
b) if assumption 4” holds, β0 is globally identified.

Local identification is obtained under a condition which is very similar to the rank condition
in linear regressions with instruments. Theorem 1.7 also provides a sufficient and testable
condition which ensures the global identification of β0.

2 Estimation

We now turn to the parametric and nonparametric estimation of P . The first assumption
describes the sampling process. In the sequel, we let Y ∗ = DY .

Assumption 7 We observe a sample ((D1, X1, Y
∗
1 , Z1), ..., (Dn, Xn, Y

∗
n , Zn)) of indepen-

dent copies of (D,X, Y ∗, Z).

Assuming that the data are i.i.d. is standard in estimation, although this condition can be
weakened without affecting consistency or rate of convergence. We also suppose, for the
sake of simplicity, that Z is always observed in the data.
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2.1 Parametric estimation

When Y has a finite support {y1, ..., yK}, the equation

E

(
D∑K

k=1 P (yk)1{Y = yk}
− 1

∣∣∣∣Z
)

= 0

provides identification of the parameters (P (yk))1≤k≤K if assumptions 3, 4 and 5 hold, by
Theorem 1.3. Hence, consistent and asymptotically normal estimators can be obtained by
GMM in this case. Similarly, if P satisfies the restrictions of assumption 2’, then

E

[(
D

F (V ′β0)
− 1

)
W

]
= 0. (2.1)

Moreover, under assumption 4”, β0 is identified globally by these conditions. Thus GMM
can also be used in this framework.

2.2 Nonparametric estimation

When Y has continuous components and one is reluctant to rely on parametric restrictions
on P , the situation is more involved because a function, and not only parameters, must be
estimated. This issue is similar to the one of nonparametric instrumental regression (see
e.g. [10], [16], [23] or [41]). For the sake of simplicity, we assume that there is no covariate
X and that (Y, Z) ∈ [0, 1]2. Moreover, since the paper is mainly focused on identification,
we only prove consistency here. The analysis of the rate of convergence could be lead by
adapting the arguments of [16].

Let us denote f = 1/P and T be the linear operator defined as

T φ(z) = E(Dφ(Y ∗)|Z = z).

Then (1.3) may be written as
T f = 1.

Under assumptions 3 and 4 (with A = L1
Y ), T is injective.20 However, its inverse is not

continuous, so that we are faced to an ill-posed problem.21 To achieve consistency, we
adopt a Tikhonov regularization as [10], [16] and [23].

20Indeed, by conditional independence, T h1 = T h2 implies E(P (Y )(h1(Y ) − h2(Y ))|Z) = 0. By
completeness and positivity of P , this implies h1 = h2.

21One may argue that the constant function one is known, so that regularization is not needed here.
Actually it is, because T is unknown and can be estimated only by a finite range estimator. This situation
is similar to the one of [13] in the framework of functional minimum distance.
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First, we consider a kernel estimator of T :

T̂ φ(z) =

∑n
i=1Diφ(Y ∗

i )Khn(z − Zi)∑n
i=1Khn(z − Zi)

For any 1 < M <∞, let us define DM as the subset of real measurable functions φ defined
on [0, 1] and such that M ≥ φ(Y ) ≥ 1 almost surely. For any square integrable function φ
defined on [0, 1], let also ||φ||2 =

∫ 1

0
φ(u)2du. Our estimator of f satisfies

f̂ ∈ arg min
φ∈DM

∥∥T̂ φ− 1
∥∥2

+ αn

∥∥φ∥∥2

where αn is a regularization parameter which, basically, enables to rule out unstable solu-
tions (see e.g. [4], for a discussion on regularization in ill-posed inverse problems). Under
the assumptions below, such a solution will always exist but may not be unique (see [2]).
If not, f̂ is any of the solutions. The consistency result relies on the following assumptions.
In the sequel, δn = h2

n + 1/nhn.

Assumption 8 (a) f ∈ DM . (b) The distribution of (Y, Z) is continuous with respect to
the Lebesgue measure and the marginal densities fY and fZ satisfy supy∈[0,1] fY (y) < +∞
and infz∈[0,1] fZ(z) > 0.

Assumption 9 For all h > 0 and u ∈ R, Kh(u) = K1(u/h) where K1 is positive,∫
K1(u)du = 1 and

∫
uK1(u)du = 0.

Assumption 10 αn → 0, δn → 0 and δn/αn → 0.

Assumption 8-(a) strengthens assumption 5. Assumption 9 is weak and standard in non-
parametric estimation. Assumption 10, which is identical to assumption 3 of [23], is also
standard. It implies that the bandwidth hn tends to zero at a slower rate than 1/n, and
that the regularization parameter αn tends to zero at a slower rate than h2

n.22

Theorem 2.1 Under assumptions 3-4 and 7-10,

lim
n→∞

E
(∥∥f̂ − f

∥∥2
)

= 0

Theorem 2.1 implies that
∥∥f̂ − f

∥∥2 converges in probability to zero. With f̂ in hand,
inverse probability weighting procedures can be used to estimate parameters on the whole

22We suppose here that αn is a deterministic sequence. See e.g. [13] for a data driven selection procedure.
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population. Let f̂−i denotes the estimator of f obtained with the sample (Dj, Y
∗
j , Zj)j 6=i.

For any g ∈ L2
Y,Z and θ = E(g(Y, Z)), define

θ̂ =
1

n

n∑
i=1

Dif̂
−i(Y ∗

i )g(Y ∗
i , Zi).

Corollary 2.2 ensures that θ̂ is consistent.

Corollary 2.2 Suppose that assumptions 3, 4 and 7-10 hold. Then

lim
n→∞

E
(
|θ̂ − θ|

)
= 0

3 Application

3.1 Introduction

In this section, the strategy developed above is exploited to estimate bounds on the short
term effects of grade retention among fifth grade students in France. Whereas most coun-
tries have almost completely given up grade retention as an educational policy,23 the level
of grade retention in France is still high. In 2002, for instance, a quarter of students have
repeated at least once in primary school (see [44]). Yet, and despite the controversy on its
effects in other countries,24 there has been no serious attempts to measure its impact in
the French educational system.25

The study is based on a panel of the French “Ministère de l’éducation Nationale” which
follows 9641 children who entered the first grade of primary school in 1997. Among others,
the panel reports the trajectories of children and their results in standardized tests at the

23A notable exception is United States. Indeed, several states have reintroduced this policy by tying
promotion on a state or district assessment (see [29]).

24Positive effects include the possibility for disadvantaged children to catch up (see e.g. [29]) and the
incentive for every student to increase their school efforts (see [28]). On the other hand, most educational
and sociological studies underline its harmful effects on the motivation of children (see e.g. [9]), drop outs
(see [31]) and even academic performances (see e.g. the meta-analyses of [22], 1989, or [30]). However,
usually, these studies rely on very few controls (see e.g. [34], for a discussion on the studies considered in
the meta-analyses of Holmes and Jimerson), so that they probably underestimate the true effects of grade
retention.

25[44] measures the effects of grade retention in the first grade of primary school using a propensity score
matching approach, but he relies on data from one school only. [8] study the effects in third grade on the
same data as here, using a linear regression approach.
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Figure 1: Promotion, retention and available test scores.

beginning of the third grade (variable Z) and sixth grade (variable Y for the 2002 test and
Y1 for the 2003 test).26 Because the sixth grade test scores are reported in the database
only for pupils who reached this grade in 2002 or in 2003, the initial sample comprises 7175
students who were in fifth grade in 2001 and in sixth grade either in 2002 or in 2003.27

23.8 percent of this sample was excluded because of missing data on the standardized test
scores in either third or sixth grade. The final sample consists in 5467 children. Among
them, 2.2% were retained in 5th grade (D = 0), 6.7% in 6th grade (D = 1 and D1 = 0)

26Tests corresponding to a given grade differ partly from year to year. The scores considered here are
built using common items only. The three scores are also standardized on the final sample.

27Other situations correspond to missing data on the trajectories, grade-advanced pupils, pupils retained
before the fifth grade and students in special classrooms.
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while the others never repeated (D = 1 and D1 = 1). Table 1 displays the average scores
on this sample. The 2002 6th grade score is missing for children retained in 5th grade since
they only entered this grade in 2003. Similarly, the 2003 6th grade score is not observed for
children who never repeated, since they were in 7th grade in 2003. As expected, differences
between retained and promoted pupils in terms of test achievement are large. On average,
the fifth (resp. sixth) grade repeaters were already, in the 3rd grade test, more than 1.5
(resp. more than 1) standard deviations below the students who never repeated. The
table also displays the progression of students retained in 6th grade during their first year
in this grade. This progression is available because these students take the test twice, at
the beginning of their first and second year in sixth grade (see Figure 1). This feature of
the sample will be useful in the following.

Retained Retained Promoted

in 5th grade in 6th grade in both grades

(D = 0) (D = 1, D1 = 0) (D = 1, D1 = 1)

Number of observations 120 365 4982

3rd grade score Z -1.48 (0.91) -1.02 (0.90) 0.11 (0.94)

2002 6th grade score Y - -1.32 (0.81) 0.12 (0.93)

2003 6th grade score Y1 -0.90 (0.87) -0.64 (0.79) -

Table 1: Summary statistics.

We focus here on the average effects of retention in fifth grade on test score achievement
one year after. Let Y1(1) (resp. Y1(0)) denote the 2003 sixth grade test score a student
would have obtained if he had been promoted in sixth grade (resp. retained in fifth grade).
The parameter of interest writes as

∆TT = E(Y1(0)− Y1(1)|D = 0) (3.1)

When D = 0, Y1(0) is observed by Y1, but Y1(1) is unobserved. Because there is no
exogenous rule acting on grade retention decisions in France, it seems difficult to rely
on an instrumental strategy to overcome this counterfactual issue.28 Rather, I suppose
that the progressions of retained students had they been promoted in sixth grade can be
bounded in the following way:

0 ≤ E(Y1(1)− Y |D = 0, Y ) ≤ E(Y1(1)− Y |D = 1, D1 = 0, Y ). (3.2)
28As an evidence of the discretionary nature of grade retention in France, an Education Bill of the

Minister of the Education in 2005 asserts that grade retention should be taken by teachers after discussion
with parents, according to the ability of the student and his progression during the year.
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The lower bound simply asserts that on average, retained students would not have regressed
during one year, had they been promoted. The upper bound states that on average, their
progression would have been smaller than the one of students with same initial test score
and who were promoted in sixth grade and retained the year after. The idea behind
this bound is that, on average, teachers do not make mistakes by retaining pupils who
would have benefited more from the sixth grade than some of the promoted students. The
two bounds somewhat represent two extreme situations. The lower bound corresponds to
perfect decisions of retention, in that retained students would not have taken any advantage
of being promoted. The upper bound corresponds to a fully randomized choice among
students who would have equally benefited from being promoted.

Under condition (3.2), we get

E(Y1|D = 0)− E [h(Y )|D = 0] ≤ ∆TT ≤ E(Y1|D = 0)− E(Y |D = 0), (3.3)

where h(Y ) = E(Y1(1)|D = 1, D1 = 0, Y ). Students retained in sixth grade take the
standardized test twice. Thus, we observe both Y and Y1(1) for them (Y1(1) = Y1 in this
case), and h is identified. On the other hand, Y is unobserved for students retained in
fifth grade, so that E[h(Y )|D = 0] and E(Y |D = 0) are not identified without further
restrictions. Nonetheless, we can use the method developed previously to point or set
identify them. Indeed, Y , the main factor of D, is unobserved when D = 0. Besides,
the third grade standardized test score Z is observed for both values of D and correlated
with Y . We now consider the two cases corresponding respectively to the independence
assumption D ⊥⊥ Z|Y and the monotonicity conditions considered in Subsection 1.3.

3.2 Empirical strategies

First strategy: conditional independence

First, let us suppose that grade retention in fifth grade is independent of the third grade
test score conditional on Y , i.e. a model of the form: Y = ϕ(Z, ε)

D = ψ(Y, η)

where η ⊥⊥ (Z, ε). The completeness condition is also supposed to hold. Informally, both
will be satisfied if the third grade score affects the ability at the end of the fifth grade,
measured by Y , but not directly grade retention. Under these assumptions, Theorem 1.3
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applies and letting p = P (D = 0), we can identify E(h(Y )|D = 0) by

E [h(Y )|D = 0] =
1

p
(E[h(Y )]− (1− p)E[h(Y )|D = 1])

=
1

p

(
(1− p)E

[
h(Y )

P (Y )
|D = 1

]
− (1− p)E[h(Y )|D = 1]

)
=

1− p

p
E

[
1− P (Y )

P (Y )
h(Y )|D = 1

]
.

E(Y |D = 0) can be identified similarly. Then, using (3.2), we obtain the following lower
and upper bounds on ∆TT :

∆TT
1 = E[Y1|D = 0]− 1− p

p
E

[
1− P (Y )

P (Y )
h(Y )|D = 1

]
(3.4)

∆
TT

= E[Y1|D = 0]− 1− p

p
E

[
1− P (Y )

P (Y )
Y |D = 1

]
, (3.5)

To estimate these bounds, we first have to estimate h and P . h was estimated using a
kernel estimator, with a gaussian kernel and a bandwidth estimated by cross validation
(see Figure 2). P was estimated by the flexible parametric form

P (y; β) =
1

1 + exp
(
−β0 −

∑k
i=1 y1{y ≥ αi} βi

) . (3.6)

In the sequel, k = 4, α1 = −∞ and (αi)2≤i≤k correspond to the estimated quantiles of order
8, 16 and 24 of Y .29. The parameter β = (β0, ..., β6) is estimated through GMM, using as
instrumental variables 1 and (Z1{Z ≥ γi})1≤i≤k, where γ1 = −∞ and the (γi)2≤i≤k are the
estimated quantiles of order 8, 16 and 24 of Z. The estimator P (.; β̂) is displayed Figure
2.30

The estimator of ∆TT
1 and ∆

TT are then defined as being the empirical analog of (3.4) and
(3.5):

∆̂TT
1 =

1

n0

 ∑
i/Di=0

Y1i −
∑

i/Di=1

P (Yi; β̂)

1− P (Yi; β̂)
ĥ(Yi)

 ,
∆̂

TT
=

1

n0

 ∑
i/Di=0

Y1i −
∑

i/Di=1

P (Yi; β̂)

1− P (Yi; β̂)
Yi

 ,
where n0 denotes the number of pupils who repeat their fifth grade.

Second strategy: monotonicity
29Several specifications have been tried. Final results are unsensitive to the choice of k and (αi)2≤i≤k.
30This plot corresponds to β̂0 = 3.07, β̂1 = 0.75, β̂2 = 4.13,β̂3 = 34.3, β̂4 = 0.42.
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Figure 2: Estimation of h and P .

Basically, the conditional independence condition holds if Y is a perfect measure of ability
at the end of fifth grade and if teachers only take into account the current ability when
deciding whether to retain a student or not. If the second statement is rather plausible given
that teachers usually do not observe children’s ability before they enter their grade, the first
statement seems too restrictive. Past scores probably bring additional information on the
current ability and thus explain part of grade retention. On the other hand, it seems very
plausible in this case that the dependence in both variable is monotonic, i.e., assumption 3’
and 6 hold. To provide empirical evidence on this assumption, a logit model on D1 among
students who were promoted in sixth grade was estimated. For these students indeed, both
Y and Z are known. The results, which are displayed Table 2, confirm the monotonicity
in both variables. As expected, we also observe a far smaller effects of the third grade test
score.

Variable Estimate (std. err.)

2002 6th grade score Y 1.31 (0.08)
3rd grade score Z 0.23 (0.07)

Table 2: Logit estimation on the probability of promotion in sixth grade.

To apply Theorem 1.5 and obtain bounds on E(h(Y )|D = 0), we also need to check that
h ∈ H1

Y ∩H2
Y Z . That h is increasing is apparent from Figure 2. To check that h ∈ H2

Y Z , we
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implemented, as suggested in Subsection 1.3, a specification test of the form (1.4).31 We
obtain a positive and significant slope coefficient in (1.4) and do not reject, at the level of
1%, the linear specification. Hence, we do not reject the assumption that h ∈ H2

Y Z .

Under assumptions 3’ and 6, and the condition h ∈ H1
Y ∩H2

Y Z , we can apply Theorem 1.5
to obtain the following bounds on E(h(Y )|D = 0):

1− p

p
E

[
1−Q(Y )

Q(Y )
h(Y )|D = 1

]
≤ E [h(Y )|D = 0] ≤ E [E(h(Y )|Z,D = 1)|D = 0]

where Q denotes a solution of E(D/Q(Y )− 1|Z) = 0.32

To get bounds on E(Y |D = 0), we also check that the identity function belongs to H2
Y Z .

This is true if E(Z|D = 1, Y ) = γ+λY with λ > 0. The specification test was not rejected
at the level of 5%, so that we accept that the identity function belongs to H1

Y ∩ H2
Y Z .

Under these assumptions, we get the same upper bound on ∆TT as under conditional
independence, but another lower bound, which writes as

∆TT
2 = E[Y1|D = 0]− E [E(h(Y )|Z,D = 1)|D = 0] (3.7)

Moreover, ∆TT
2 and ∆

TT are sharp by Theorem 1.5.

To estimate ∆TT
2 , a kernel estimator ĝ of g(z) = E(h(Y )|Z = z,D = 1) was first estimated,

and then plugged in the empirical analog of (3.7):

∆̂TT
2 =

1

n0

 ∑
i/Di=0

Y1i −
∑

i/Di=1

ĝ(Zi)

 .
3.3 Results

The final results are displayed in Table 3. Under the assumption of a fully valid instrument,
the interval only ranges positive values, so that grade retention leads to positive short
terms effect even in the least favorable case.33 The pattern is less clear if one weakens
the instrumental exclusion restriction into a monotonicity condition. Under the extreme
case where grade retention only depends on the third grade test score, this policy would
be harmful in terms of test achievement. This assumption does not seem very credible,

31More precisely, we implemented the simple differencing test suggested by [46] (p. 701) with the kernel
estimator ĥ instead of h.

32We do not use P here to emphasize the fact that the solution of this equation is not P (D = 1|Y )

anymore. However, both P and Q are estimated with P (.; β̂).
33Indeed, the null hypothesis that the lower bound is negative is rejected at 5%.
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though. As emphasized previously, the effects of Y on D is probably much more important
than the one of Z. Thus, even in the worst case, the true effect is more likely to be close
to ∆̂TT

1 , that is to say around zero.

Estimator Value 95% Confidence interval

∆̂
TT 1.17 (0.24) [0.75,1.67]

∆̂TT
1 0.29 (0.16) [0.02,0.65]

∆̂TT
2 -0.43 (0.06) [-0.53,-0.30]

Standard errors were obtained through bootstrap with 1,000 replications.
Effects are measured in standard deviations terms.

Table 3: Bounds on ∆TT under different assumptions.

In conclusion, and even if uncertainty is rather important,34 the conclusion on short term
effects of grade retention is rather positive. This result is in line with the results of [29]
for third graders in Chicago, but more optimistic than theirs on the sixth graders. This
difference could reflect the opposition on grade retention decision rules in the two cases.
Letting teachers and parents decide on the basis of their observation of the students during
the whole year, and not on two tests only as in Chicago, may reduce measurement errors on
the ability of children. On the other hand, such a discretionary process is likely to favour
or penalize systematically some subpopulations of students, no matter of their ability, and
thus decrease the efficiency of grade retention. The results suggest that the former effects
overcome the latter.

4 Conclusion

This paper considers the issue of endogenous selection with instruments. The key assump-
tion for identification, which contrasts with the usual ones in selection problems, is the
independence between instruments and selection, conditional on the dependent variables.
A general nonparametric identification result is obtained under a completeness condition.
This framework can be applied to a broad class of selection models, including Roy models
with an unobserved sector, nonignorable nonresponse or binary models with data taken

34This uncertainty is rather due to the endogenous selection on grade retention than on the true effect
of the instrument on fifth grade retention. The former effect, which prevents us from recovering the
counterfactual progression of retained students, accounts indeed for 55% of the width of the set.
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from one response stratum. Set identification is also considered when the conditional in-
dependence condition fails. Under weaker conditions of monotonicity indeed, I show that
there exists sharp and finite bounds on parameters of interest. This result is used to
estimate bounds on the effects of grade retention in France.

The paper raises two challenging issues. First, we may wonder whether the ideas developed
here could be adapted to generalized Roy model. In these models, selection depends on
prediction on the dependent variable rather than on the dependent variable itself. Thus,
the conditional independence condition breaks down but the structure of the model may
provide information for point or at least set identification. Second, the sharp upper bounds
are obtained on a set of parameters which is rather abstract. Further characterizations of
this set appear desirable, for both theoretic and practical reasons.
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