
Quantile-based inference of parametric transformations

between two distributions∗

Laurent Gobillon (INED)† Sébastien Roux (CREST-INSEE)‡

February 28, 2008
Preliminary Version

Abstract

In this paper, we compare the distributions of a continuous outcome between two groups. We focus on

specifications such that the two distributions are related by some parametrized transformations of values and

ranks. These specifications can be derived from a specific class of theoretical models. We propose a quantile

method to estimate the parameters and derive their asymptotic distribution. We also propose a test of the

specification. Monte-Carlo simulations show that the estimators of the parameters perform very well when the

number of observations in each group is at least a few thousands. We finally apply our method to the wage

differential between skilled males and females in a selection of sectors. We are able to quantify the respective

effects of the glass ceiling and a uniform discrimination which may lower the wages of females.
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1 Introduction

A growing literature is interested in comparing the distributions of a continuous outcome between two groups. The

most important econometric contributions are semi or non parametric in spirit and try to assess the effect of a

policy on the whole distribution of outcomes. They assess the impact of a policy at a given quantile comparing

the distributions of the treated and untreated groups. This type of approach was initiated by Doksum (1974) who

estimated the effect of a treatment at a given rank of the distribution simply as the difference between the quantiles

of the treated and untreated groups computed at this rank. Papers now introduce explanatory variables in models

and propose IV methods (Abadie, Angrist and Imbens, 2002; Chernozhukov and Hansen, 2005), propensity score

methods (Firpo, 2007), or difference-in-difference improvements (Athey and Imbens, 2006). This literature typically

tries to estimate the effect of the treatment under minimum parametric conditions.

In this paper, we are rather interested in estimating and testing a theoretical model under some restrictive parame-

trizations. We will focus on a given class of models which result in the distributions of the two groups to be linked

by some transformations of values and ranks. If we denote λj the quantile function of group j, these models yield

a relationship that writes: λ2
£
rγ0 (u)

¤
= zβ0 [λ1 (u)] for every quantile u, where β0 and γ0 are some parameters,

zβ0 is the transformation of values, and rγ0 is the transformation of ranks. We also asume that the value and

rank transformations are monotonic. Several types of micro-economic models can give rise to this specification.

In particular, this specification is obtained when the continuous outcome is observed only for a selected group of

agents and the probability to be selected is a monotonic function of the ranks of the agent in the distribution of

their group.

We develop a method to estimate the parameters of the model and derive the asymptotic distribution of the

estimators. The estimation method can be decomposed into two steps. We first estimate the quantiles of the two

group distributions non parametrically. We then minimize the distance between the quantiles of the two groups

after the value and rank transformations have been applied. Note that even if our method uses quantiles, our work

is not directly related to the literature on quantile regressions (see Köenker, 2005 for an overview). Indeed, we

minimize the distance between transformed quantile functions rather than the penalized sum of absolute deviations

at the individuel level. We then propose a test of the specification of the model which allows to assess whether

the mechanisms included in the model are compatible with the data. Some Monte-Carlo simulations show that our

method works very well provided that there are enough observations in the two groups, that is to say at least a

few thousands.

Our method can be applied in many settings. In particular, many theoretical papers develop models with agents

who are heterogeneous in a given dimension. Ex-ante, the group distributions of agents are assumed to be the

same. Distributions are then transformed by some economic mechanisms. Ex-post, the group distributions usually

differ but may be related by some value and rank transformations. This type of model can by found for instance

in international trade when looking at the effect of competition on the local distributions of firm productivities.

Competition is usually fiercer in larger markets, which makes a larger share of firms at the bottom of the local

productivity distribution to disappear (Melitz, 2003; Melitz and Ottaviano, 2007). This left truncation corresponds
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to a rank transformation. Other papers put forward the existence of more interactions in larger markets which

may benefit to all firms (Duranton and Puga, 2004). These interactions can be modelled as a translation of

the productivity distribution in a large market to the right compared to the distribution in a small market. This

translation corresponds to a value transformation. Our method allows to assess whether competition or interactions

prevail by comparing the productivity distributions of firms in small and large markets (Combes and al., 2008).

An originality of our work is that we use the whole group distributions to test a theory. This is not what is usually

done in the empirical literature which rather uses fragmented information on the group distributions. For instance,

papers testing the glass ceiling effect often run separate quantile regressions for wages at different quantile values.1

Each regression includes a dummy for being a female. The papers then consider that there is a glass ceiling if

the gender gap is larger at the top of the distribution than at the bottom (Albrecht, Björklund and Vroman,

2003). In an application, we parametrize the effects of the glass ceiling and a uniform discrimination against

females. We estimate the parameters of these two discriminations comparing on the whole wage distributions of

males and females. This is done in one single minimization program using all the quantiles of the two distributions

simultaneously. We find that both types of discrimination have a significant effect on the wages of females.

In the first section, we expose our setting where two group distributions are related to each other through some

parametrized rank and value transformations. Section two proposes some examples of transformations to which

our approach can be applied. Section three presents our estimation method and derive the asymptotic distribution

of the estimators. It also provides a test of the model. Section four explains how our method can be implemented

in an easy way. Results of Monte-Carlo simulations are given in section five. We then propose an application of

the method to the difference in the wage distribution between males and females in section 6. Finally, section 7

concludes.

2 The setting

We consider two groups of heterogeneous agents who differ in a given dimension measured by a variable y which

takes its values in a bounded interval included in R. The draws of y for the agents are independent. We denote Fj
the cumulative of the outcome distribution in group j. We assume that the distribution in one of the two groups

(say 2) can be deduced from the distribution in the other group (say 1) through some parametrized value and

rank transformations. More precisely, while a monotonic function zβ0,2 (y) transforms the values of the outcome

variable y, another monotonic function rγ0,2 (u) changes the ranks u of the transformed outcome. Here, β0 and γ0

are some parameters of interest that we want to estimate. The functions are indexed by the subscript 2 as we write

the distribution in the second group as a transformation of the distribution in the first group (we will show that

under our assumptions, we may swap the two groups). We are going to look for the parameters of interest (β0, γ0)

in a set of admissible parameters (β, γ) which we denote Φ. We make the following assumptions:

1Other examples include Juhn, Murphy and Pierce (1993) who study the variation across time in the wage distribution of males in

the US, and Syverson (2004).
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A1: For (β, γ) ∈ Φ, rγ,2 and zβ,2 are strictly increasing and three times differentiable. The first, second and
third-order derivatives of rγ,2 and zβ,2 are continuous.

In particular, A1 ensures that the two functions rγ,2 and zβ,2 are invertible, which will be used extensively in the

paper. We denote zβ,1 = z
−1
β,2 and rγ,1 = r

−1
γ,2. In fact, A1 also assume that the two functions are increasing, but

the decreasing case can be treated similarly. More formally, the link between the two distributions is written as:

F2(zβ0,2 (y)) = rγ0,2 (F1 (y)) for F1 (y) ∈ rγ0,1 ([0, 1]) ∩ [0, 1] (1)

Here, zβ0,2 changes the y-values and rγ0,2 transforms some ranks of the first distribution into some ranks of the

second distribution. rγ0,1 ([0, 1]) ∩ [0, 1] is the set of ranks in the first distribution for which (1) holds. [0, 1] ∩
rγ0,2 ([0, 1]) is the set of ranks in the transformed second distribution for which (1) holds. Note that the set

of ranks in distribution j which participate to (1) rewrite as
h
uγ0,j , uγ0,j

i
where uγ,j = max (0, rγ,j (0)) and

uγ,j = min (1, rγ,j (1)). In particular, we can distinguish the three following cases:

• rγ0,1 (0) > 0. We have uγ0,1 > 0 and the lowest ranks of the first distribution are not used. We also have:
rγ0,2

³
uγ0,1

´
= 0 which means that the lowest ranks of the transformed second distribution are used.

• rγ0,1 (0) = 0. We have uγ0,1 = 0 and rγ0,2
³
uγ0,1

´
= 0 which means that the lowest ranks of both the first

and the transformed second distributions are used.

• rγ0,1 (0) < 0. We have uγ0,1 = 0 and the lowest ranks of the first distribution are used. We also have:

rγ0,2

³
uγ0,1

´
= rγ0,2 (0) > 0 which means that the lowest ranks of the transformed second distribution are

not used.

The same line of arguments can be applied at the top of the distributions looking at rγ0,1 (1) Q 1. Note that

rγ0,1 changes the admissible ranks non uniformely and can account for the disappearance of some observations

depending on their y-value. This means that it can account for selection. We want to rewrite equation (1) with

quantiles and we will need quantities to be differentiable in the estimation section. Hence, we make the following

assumption:

A2: for j ∈ {1, 2}, Fj is strictly increasing and three time differentiable. The first, second and third-order deriva-
tives of Fj are continuous.

Assumption A2 makes Fj invertible. Let u = F1(y) and λj = F
−1
j , equation (1) can be rewritten as:

zβ0,2 (λ1 (u)) = λ2
¡
rγ0,2 (u)

¢
, for u ∈

h
uγ0,1, uγ0,1

i
(2)

The set of equations (2) constitute an infinite set of equalities between transformed quantiles from which it is

possible to identify the parameters β0 and γ0. We suppose that the solution is unique:

A3: There is a unique couple (β0,γ0) which verifies (2).
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When specifying the relationships between the distributions in the two groups, we treated these groups asymetri-

cally. In fact, it is possible to swap their role. We can apply the function zβ0,1 to both sides of the equalities (2)

compute at the ranks rγ0,1 (u). We obtain:

λ1
¡
rγ0,1 (u)

¢
= zβ0,1 (λ2 (u)) , for u ∈

h
uγ0,2, uγ0,2

i
(3)

These equations are the symetric of (2). We will use both sets of equations (2) and (3) to estimate the parameters.

3 Interpretations

3.1 Deriving the specification from a theoretical model

We now show that the equalities (2) can be derived from a class of theoretical models with two groups. This

class is defined such that before any economic mechanism takes place, the distribution of potential outcomes

in the two groups are the same. We denote F̃ the cumulative of this common distribution which we call the

baseline distribution. The theoretical model transforms the cumulative F̃ through some economic mechanisms into

a cumulative F1 (resp. F2) for the first (resp. second) group. For instance, the baseline distribution can be the

distribution of productivities of firms before they enter a small or a large market. The less productive entrants

disappear because of competition which is fierce on the large market and less intense on the small one (see Melitz,

2003). The distribution of firm productivities on the two markets after competition (which are the ones observed)

are not the same as more firms disappear form the large market. They also differ from the baseline distribution.

We assume that the distribution of each group j can be derived from the baseline distribution through some value

and rank tranformations denoted respectively zβj (y) and rγj (y). We make the assumption that:

A1b: rγj and zβj are strictly increasing and three times differentiable. The first, second and third-order derivatives

of rγj and zβj are continuous.

A2b: eF is strictly increasing and three time differentiable. The first, second and third-order derivatives of eF are

continuous.

Here, A1b and A2b ensure that the functions eF , rγj and zβj are invertible. The link between the group distributions
and the baseline distribution is given by:

Fj(zβj (y)) = rγj

³ eF (y)´ for F1 (y) ∈ hr−1γj (0) , r−1γj (1)i
This relationship is simpler than (1). Indeed, the group distributions may be a truncated version of the baseline

distribution, but the reverse cannot be true. We denote eλ = eF−1. The transformed quantile functions verify:
zβj

³eλ (u)´ = λj

³
rγj (u)

´
, for u ∈

h
r−1γj (0) , r

−1
γj
(1)
i

(4)

Note that this specification is similar to the one introduced in the previous section which lead to (2). Applying the

function z−1βj on both sides of (4), we get:eλ (u) = z−1βj hλj ³rγj (u)´i , for u ∈ hr−1γj (0) , r−1γj (1)i (5)
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DenoteΘ =
n
(γ1, γ2)

¯̄̄
[r−1γ1 (0) , r

−1
γ1
(1)] ∩ [r−1γ2 (0) , r

−1
γ2
(1)] 6= ®

o
. The data do not bring any information to identify

the parameters of the model for values of (γ1, γ2) which do not belong to Θ. Indeed, for these values, equation (5)

is verified at best only for j = 1 or j = 2 for any quantile y and the function λ̃ (u) is not observed. Hence from

now on, we will focus only on parameters γ1 and γ2 in the set of values Θ. Using (5), we can then write that:

z−1β1

¡
λ1
¡
rγ1 (u)

¢¢
= z−1β2

¡
λ2
¡
rγ2 (u)

¢¢
, for u ∈

h
max

³
r−1γ1 (0) , r

−1
γ2
(0)
´
,min

³
r−1γ1 (1) , r

−1
γ2
(1)
´i

These equations rewrite:³
zβ2 ◦ z

−1
β1

´
(λ1 (u)) = λ2

³³
rγ2 ◦ r

−1
γ1

´
(u)
´
, for u ∈

h
max

³
0, rγ1 ◦ r

−1
γ2
(0)
´
,min

³
1, rγ1 ◦ r

−1
γ2
(1)
´i

Denote zβ0,2 = zβ2 ◦ z
−1
β1
, rγ0,2 = rγ2 ◦ r−1γ1 , zβ0,1 = z−1β0,2 and rγ0,1 = r−1γ0,2, where β0 (resp. γ0) are some

combinations of the parameters β1 and β2 (resp. γ1 and γ2) which are identified. We are back to the specification

in the first section. This means that the specification yielding (1) corresponds to a theoretical model where only

some combinations of parameters are identified. For instance, if the rank transformation is the identity and the

value transformation corresponds to a transaltion (zβj (y) = y−βj), it is possible to identify only the difference in

translation between the two groups (β2−β1). Note that assumptions A1b and A2b are sufficient for A1 and A2 to
be verified. This means that assumptions on the underlying theoretical model may be used to grant assumptions

needed for the reduced form given by (2). In the next subsection, we give some more examples of specifications for

the functions zβj and rγj which lead to equalities of the form (2).

3.2 Examples

In this subsection, we characterize the functions zβj and rγj for two transformations which are quite common in

the literature: a linear transformation of the y−values and selection. We show how to deduce the functions zβ0
and rγ0 of the reduced form (2). Of course, the resduced form could be used directly, without referring to any

underlying theoretical model.

1. The linear transformation is charaterized by z(aj ,bj) (y) = ajy + bj for j ∈ {1, 2}. In that case, the relative
linear transformation between groups 1 and 2 writes:

zβ0,2 (y) =
³
z(a2,b2) ◦ z−1(a1,b1)

´
(y)

= z(a2,b2)

µ
x− b1
a1

¶
=
a2
a1
y + b2 −

a2
a1
b1

= a0y + b0

where a0 = a2
a1
, b0 = b2 − a2

a1
b1, and β0 = (a0, b0)

0.

2. We now consider the case where the distributions of groups 1 and 2 are some transformations of the baseline

distribution through a selection process. We assume that for each group j, the observations are selected

with respect to their rank u in the baseline distribution according to a sampling function pγj (u). When
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pγj (u) > 1, the obervation with rank u is over-sampled, and when pγj (u) < 1 the observation with rank u is

under-sampled. The density of the distribution in group j then verifies:

fj (y) =
pγj

³ eF (y)´ ef (y)
yjR
y
j

pγj

³ eF (z)´ ef (z) dz (6)

where ef (y) is the baseline distribution and y
j
is the minimum value and yj the maximum in the group j.

We have:

Fj (y) =

yR
y
j

pγj

³ eF (z)´ ef (z) dz
yjR
y
j

pγj

³ eF (z)´ ef (z) dz =
F̃ (y)R
uj

pγj (v) dv

ujR
uj

pγj (v) dv

where uj = F̃
³
y
j

´
and uj = F̃

¡
yj
¢
. uj (resp. uj) is the lowest (resp. highest) rank of the group j

observations in the baseline distribution. We have Fj (y) = rγj

³
F̃ (y)

´
where rγj is the increasing function

defined by:

rγj (u) =
Pγj (u)

Pγj (uj)
, for u ∈

£
uj , uj

¤
(7)

where Pγj (u) =
R u
uj
pγj (v) dv. Note that zβj (y) = y. We get:

r−1γj (v) = P
−1
γj

³
Pγj (uj) v

´
, for v ∈ [0, 1] (8)

We want to compose r−1γ1 (v) with the function rγ2 for admissible value of v. We have r
−1
γ1
(v) ∈ [u1, u1] for

v ∈ [0, 1]. Hence, rγ0,2 = rγ2 ◦ r−1γ1 (v) is well defined only for r
−1
γ1
(v) ∈ [max (u1, u2) ,min (u1, u2)], that is to

say for v ∈
h
max

³
0, rγ1 ◦ r−1γ2 (0)

´
,min

³
1, rγ1 ◦ r−1γ2 (1)

´i
. We finally get:

rγ0,2 (y) = rγ2

³
P−1γ1

¡
Pγ1 (u1) y

¢´
=
Pγ2

³
P−1γ1

¡
Pγ1 (u1) y

¢´
Pγ2 (u2)

, (9)

for y ∈
h
max

³
0, rγ1 ◦ r

−1
γ2
(0)
´
,min

³
1, rγ1 ◦ r

−1
γ2
(1)
´i

Note that (6) can be rewritten as: fj (y) = r0γj

³ eF (y)´ ef (y). Hence r0γj is the sampling function that selects
observations into the group j depending on their rank in the baseline distribution. It is possible to show

that: f2 (y) = r0γ0 (F1 (y)) f1 (y) and f1 (y) = r−10γ0
(F2 (y)) f2 (y).2 This means that r0γ0 (resp. r

−10
γ0
) can be

interpreted as the sampling function that selects obervations from group 1 (resp. 2) into group 2 (resp. 1)

depending on their rank in group 1 (resp. 2).

2 Indeed, combining (6) for groups 1 and 2, we get: f2 (x) =
Pγ1 (1)

Pγ2 (1)

pγ2( eF (x))
pγ1( eF (x))f1 (x). We also have from (9): r0γ (F1 (x)) =

Pγ1 (1)

Pγ2 (1)

pγ2

³
P−1γ1

(Pγ1 (1)F1(x))
´

pγ1

³
P−1γ1 (Pγ1 (1)F1(x))

´ . Using (8), we get F1 (x) = rγ1

³
F̃ (x)

´
⇐⇒ F̃ (x) = r−1γ1 (F1 (x)) = P−1γj

³
Pγj (1)F1 (x)

´
we get

the result. The same line of arguments hold for group 2.
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Consider the special case of smooth random selection in which pγj (u) ∈ [0, 1] for all u ∈ [0, 1] with pγj
differentiable, and more specifically the fonction pγj (u) = (1− u)

γj for γj > 0 (selection is here decreasing

in the rank in the distribution). We then get: Pγj (u) =
1−(1−u)γj+1

γj+1
, thus rγj (u) = 1− (1− u)

γj+1. Finally,

rγ0,2 (y) = rγ2 ◦r−1γ1 (y) = 1− (1− y)
γ2+1
γ1+1 and only the combination of parameters γ2+1

γ1+1
= γ0+1 is identified.

When γ0 < 0 (resp. γ0 > 0), observations in group 2 are more (resp. less) selected in the top of the

distribution than observations in group 1.

Consider now the special case of deterministic selection where there are both a left and a right censorship. In

that case, we have: pγj (u) = 1 for u ∈
£
uj , uj

¤
⊂ [0, 1] with γj =

¡
uj , uj

¢0
and pγj (u) = 0 for u /∈

£
uj , uj

¤
. We

get: Pγj (u) = min (u, uj)−min
¡
u, uj

¢
, and thus rγj (u) =

min(u,uj)−min(u,uj)
uj−uj

. Hence, r−1γj (v) =
¡
uj − uj

¢
v+

uj for v ∈ [0, 1], and rγ (y) =
u1−u2
u2−u2

+
u1−u1
u2−u2

y, for y ∈
h
max

³
0,

u2−u1
u1−u1

´
,min

³
1,

u2−u1
u1−u1

´i
. Hence, only two

combinations of the parameters, say v = u1−u2
u2−u2

and v = u1−u2
u2−u2

, are identified on the common supportdefined

by
h
max

³
0, −vv−v

´
,min

³
1, 1−vv−v

´i
. Note that we have rγ (y) = v + (v − v) y: v (resp v) is the relative left-

censorship (resp. right-censorship) truncation parameter of the distribution 2 with respect to distribution 1.

When v < 0 (resp v > 1), distribution 1 is more left-censored (resp. right-censored) than distribution 2.

4 Estimation

The parameters of the model are identified from equations (2) which are equalities between transformed quantiles

of the two groups. However, in practice, quantiles are not observed and need to be estimated. For the estimated

quantiles, equations (2) are not verified anymore because of the sampling error. In this section, we explain how

to recover the parameters of the model from the minimization of a criterium which is specified as a function

of estimated quantiles. We derive the asymptotic law followed by the estimated parameters and provide some

asymptotic results on this criterium.

4.1 Minimization criterium

We choose the minimization criterium to be the quadratic distance between the transformed quantiles of groups

1 and 2 on their common support. Consider the distribution in group 1 truncated below by uγ0,1 and above by

uγ0,1. Any rank t in this truncated distribution corresponds to a rank uγ0,1 (t) = uγ0,1 +
³
uγ0,1 − uγ0,1

´
t in

distribution 1 to which is associated the quantile λγ0,1 (t) = λ1
¡
uγ0,1 (t)

¢
and the transformed rank in distribution

2: rγ0,2 (t) = rγ0,2
¡
uγ0,1 (t)

¢
. Equations (2) can be rewritten as:

zβ0,2

³
λγ0,1 (t)

´
= λ2

³
rγ0,2 (t)

´
for t ∈ [0, 1] (10)

A minimization criterium associated to (2) is then defined as:

bC1 (β, γ) = Z 1

0

w1 (t)
h
zβ,2

³bλγ0,1 (t)´− bλ2 ³rγ0,2 (t)´i2 dt (11)
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where w1 (.) is any strictly positive weight function, bλj is an estimator of λj , and bλγ0,1 (t) = bλ1 ¡uγ0,1 (t)¢. The
literature proposes many estimators of λj which can be summarized in a nesting specification given by Cheng and

Parzen (1997):

bλj (u) = 1Z
0

eλj (t) dtKn (u, t) (12)

where eλj is the sample quantile function and for each u, Kn (u, ·) is a cdf on [0, 1]. When Kn (u, ·) is a mass point 1
at u, (12) gives the sample quantile function. When Kn (u, t) = 1

hn
k
³
t−u
hn

´
where k is a density and hn a sequence

of reals, (12) gives the kernel estimator. We make an additional assumption to ensure that the minimization

criterium has a solution:

A4: Φ is compact.

In fact, we can also use the equations (3) to get a minimization criterium. Consider the distribution in group 2

truncated below by uγ0,2 and above by uγ0,2. Any rank t in this truncated distribution corresponds to a rank

uγ0,2 (t) = uγ0,2 +
³
uγ0,2 − uγ0,2

´
t in distribution 2 to which is associated the quantile λγ0,2 (t) = λ2

¡
uγ0,2 (t)

¢
and the transformed rank in distribution 1: rγ0,1 (t) = rγ0,1

¡
uγ0,2 (t)

¢
. Equations (3) can be rewritten as:

λ1

³
rγ0,1 (t)

´
= zβ0,1

³
λγ0,2 (t)

´
, for t ∈ [0, 1]

A minimization criterium associated to (3) is:

bC2 (β, γ) = Z 1

0

w2 (t)
hbλ1 ³rγ0,1 (t)´− zβ,1 ³bλγ0,2 (t)´i2 dt (13)

where w2 (.) is any strictly positive weight function, and bλγ0,2 (t) = bλ2 ¡uγ0,2 (t)¢. The expression of bC2 is the same
as that of bC1, switching groups 1 and 2. It is then possible to combine the two criteria to obtain a criterium where

groups 1 and 2 are treated symetrically:

bC (β, γ) = bC1 (β, γ) + bC2 (β, γ) (14)

Note that the criterium (14) embeds both the criteria (11) and (13) that can be recovered respectively fixing

w1 (t) = 0 and w2 (t) = 0 for all t ∈ [0, 1].

4.2 Asymptotics

We now study the asymptotic properties of the estimators of the parameters and the criterium. We make an

additional assumptions:

A5a: for any function g, we have: sup
u∈[0,1]

¯̄̄̄
1R
0

g (t) dtKn (u, t)− g (u)
¯̄̄̄
P→ 0.

A5b: we have:
¯̄
∂Kn

∂t (u, t)
¯̄
6M0 (u, n) for almost all t, with sup

u∈[0,1]
M0 (u, n) = o

¡
nθ0
¢
, θ0 < 1/2.

9



Applying A5a to the function eλj and using A5b ensures that the quantile estimator converges uniformely to its
true value (see appendix). Note that A5a and A5b hold trivially when Kn (u, ·) is a mass point 1 at u. When
Kn is a kernel, A5a usually holds when the bandwidth tends to zero as n tends to infinity, and A5b holds if

the convergence speed of the bandwidth is not too large. We then have the following consistency theorem for the

estimated parameters:

Theorem 1 Under A1-A5b, we have:
³bβ, bγ´ P→ (β0, γ0) the true value of the parameters.

Proof. See appendix.

We now establish the asymptotic distribution of the estimated parameters. We denote f
γ,j

¡
λγ,j (t)

¢
=

fj(λγ,j(t))
uγ,j−uγ,j

1t∈[0,1]

the density of distribution j truncated below by uγ,j and above by uγ,j , where fj is the density in group j.

We also introduce Nj the number of observations in group j and bNγ,j the number of uncensored observations

(which are the observations corresponding to ranks between uγ,j and uγ,j). We also introduce the two functions

μ1 (t) = zβ,2 ◦ λγ,1 (t) and μ2 (t) = zβ,1 ◦ λγ,2 (t) as well as the two following vectors that will be used to write our
convergence theorem:

V(β,γ),1 (t) = 2

⎛⎜⎝ ∂zβ,2
∂β

¯̄̄
λγ,1(t)

− ∂rγ,2
∂γ

¯̄̄
uγ,1(t)

λ02 ◦ rγ,2 (t)

⎞⎟⎠
V(β,γ),2 (t) = 2

⎛⎜⎝ ∂zβ,1
∂β

¯̄̄
λγ,2(t)

− ∂rγ,1
∂γ

¯̄̄
uγ,2(t)

λ01 ◦ rγ,1 (t)

⎞⎟⎠

In the next theorem, we show that the estimated parameters converge in distribution to a normal law at speedq
1bNγ,1 + 1bNγ,2

under some additional assumptions. The line of the proof is quite similar to that used to establish

the asymptotic law of the maximum likelihood estimator. We first want to apply the mean value theorem to

the first-order derivative of the bC. For that purpose, we need bC to be twice differentiable. We thus make the

assumptions:

A5c: ∂Kn

∂t is twice differentiable in u and
¯̄̄
∂k+1

∂uk∂t
Kn (u, t)

¯̄̄
6 Mk (u, n) for almost all t and k ∈ {1, 2}, with

sup
u∈[0,1]

Mk (u, n) = o
¡
nθk
¢
, θk < 1/2.

A5d: for k ∈ {1, 2} and any function g that is twice differentiable, we have: sup
u∈[0,1]

¯̄̄̄
1R
0

g (t) ∂k+1

∂uk∂t
Kn (u, t) dt− ∂kg

∂uk
(u)

¯̄̄̄
P→

0.

A6: there is a lower bound a > 0 such that f (x) > a nearly everywhere.

Assumption A5c ensures that the estimated quantiles bλj , j ∈ {1, 2} which intervene in bC are twice differentiable,

and so is bC. Note that this property is not verified when bλj is the sample quantile estimator eλj . According to the

10



mean value theorem, we have:⎛⎝ bβ − β0bγ − γ0

⎞⎠ = −

⎛⎝ ∂2 bC
∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β,γ)

⎞⎠−1 ∂ bC
∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

where β lies between β0 and bβ, and γ lies between γ0 and bγ. Assumption A5d ensures that the derivatives of
quantiles bλj converge to the derivatives of quantiles λj . When Kn is a kernel, the assumption is verified if the
kernel is sufficiently smooth and the bandwidth tends to zero fast enough when n tends to infinity (see Härdle,

1990). Finally, assumption A6 ensures that λj and its first and second-order derivatives to be lipschitzienne.

This is because the derivatives of the quantiles functions can be bounded up to the third-order as they write as

ratios such that their denominator stays away from zero. It is then possibility to show that the first right-hand

side term converges to a given matrix (see Lemma 5 in appendix). This matrix would correspond to the Fisher

information matrix for the maximum likelihood estimator. We can then establish that ∂ bC
∂(β,γ)T

¯̄̄
(β0,γ0)

follows a

normal distribution. In fact, we have that following asymptotic equivalence (see appendix):

∂ bC
∂ (β, γ)

¯̄̄̄
¯
(β0,γ0)

∼
Z 1

0

w1 (t)V(β0,γ0),1 (t)
h
zβ0,2 ◦ bλγ0,1 (t)− bλ2 ◦ rγ0,2 (t)idt

+

Z 1

0

w2 (t)V(β0,γ0),2 (t)
h
zβ0,1 ◦ bλγ0,2 (t)− bλ1 ◦ rγ0,1 (t)idt

Terms in the integrals on the right-hand side are random because we use the estimated quantiles instead of the

true value of the quantiles. In fact, these integrals write as the sum of some estimated quantiles. These estimated

quantiles are not independent. Indeed, for any given j ∈ {1, 2}, the quantiles bλj (u1) and bλj (u2) are correlated for
any given u1,u2 ∈ [0, 1]2. In our asymptotic derivations, we thus need the joint asymptotic law of the estimated
quantiles. We restrict our attention to kernel estimators and suppose that:

A7: the functions Kn (·, ·) are some kernel functions such that Kn (u, t) = 1
hn
k
³
t−u
hn

´
where 0 < hn → 0, k has a

bounded support,
Z
k (x) dx = 1, eλ, r−1γj , and zβj have bounded first-order derivatives.

Under assumptions A1-A7, using Theorem 1.3 p429 in Falk (1985), we get that
p
Njfj (λ) (bλj − λj) converges to

a standard brownian bridge. This property is enough to establish the result.

We now give our theorem which establishes the asymptotic distribution of the estimated parameters:

Theorem 2 Under A1-A7, we have:Ã
1bNγ,1

+
1bNγ,2

!− 1
2

⎛⎝ bβ − β0bγ − γ0

⎞⎠ d
=⇒ N

¡
0,Γ−1ΩΓ−1

¢
where:

Γ =
1

2

Z 1

0

h
w1 (t)V(β0,γ0),1 (t)V

T
(β0,γ0),1

(t) + w2 (t)V(β0,γ0),2 (t)V
T
(β0,γ0),2

(t)
i
dt

Ω =

Z 1

0

T {g} (u)T {g} (u)0 du

11



with:
T{g}(u) =

R 1
u
g (t) dt−

R 1
0
tg (t) dt

where: g (t) =
£
w1 (t)V(β0,γ0),1 (t) + w2 (s (t))V(β0,γ0),2 (s (t)) zβ0,1 [μ1 (t)]

¤
μ01 (t)

and: s (t) =
rγ0,2

(t)−uγ0,2
uγ0,2−uγ0,2

Proof. See appendix.

As the asymptotic law is quite intricate, confidence intervals may be computed by bootstrap. We now establish

the asymptotic distribution of the minimization criterium (14) at the optimum. This asymptotic distribution can

then be used to test the model. We have the following theorem:

Theorem 3 Under A1-A7, we have:Ã
1bNγ0,1

+
1bNγ0,2

!−1 bC (β0, γ0) d
=⇒

Z 1

0

w1 (t)μ
0
1 (t)

2
B1 (t)

2
dt+

Z 1

0

w2 (s)μ
0
2 (s)

2
B2 (s)

2
ds (15)

where μ1 (t) = zβ0,2

³
λγ0,1 (t)

´
, μ2 (s) = λ1

³
r
γ0,1

(s)
´
, bNγ0,j is the number of uncensored observations in group

j, B1 and B2 are some brownian bridges such that for all s, t ∈ [0, 1], B1 (t) = B2 (s) with s and t such that:

uγ0,2 (s) = rγ0,2 (t). We also have:Ã
1bNbγ,1 + 1bNbγ,2

!−1 bC ³bβ, bγ´−Ã 1bNγ0,1

+
1bNγ0,2

!−1 bC (β0, γ0) d∼ −1
2

X
k

D(β0,γ0),kX
2
k (16)

where Xk, k = 1, ...,K, are some independent normal laws and D(β0,γ0),k is the k
th (positive) eigenvalue of Λ0ΓΛ

where Γ−1ΩΓ−1 = ΛΛ0 (which is a Choleski decomposition).

Proof. See Appendix.

Theorem (3) establishes the asymptotic law of the criterium and thus provides a way to test of a the model.

Indeed, the criterium should not be different from zero if the model is true and its value should thus be in the 95%

confidence interval of the asymtpotic law.

The asymptotic law of the criterium can be decomposed in two terms. The first one (15) is the integral of a

single weighted brownian bridge as it rewrites:Z 1

0

w1 (t)μ
0
1 (t)

2
B1 (t)

2
dt+

Z 1

0

w2 (s)μ
0
2 (s)

2
B2 (s)

2
ds

=

Z 1

0

h
w1 (t) + w2 (s (t)) z

0
β0,1

[μ1 (t)]
2 /s0 (t)

i
μ01 (t)

2B21 (t) dt (17)

This is obtained with a change in variable (see appendix). It comes from the fact that B1 and B2 are linked and

correspond to the same brownian bridge. The second term of the asymptotic law (16) is a sum of weighted chi-

squares (Xk). Note that the two terms (15) and (16) are not independent since Xk, k = 1, ...,K can be expressed

as functions of B1 and B2.

12



Theorem (3) also shows that the asymptotic law of the criterium bC ³bβ, bγ´ depends on the true value of the
parameters (β0, γ0). This makes impossible to test that bC ³bβ, bγ´ = 0. However, for some specific weights w1 (t) =
w2 (s (t)) =

1h
1+z0β0,1

[μ1(t)]
2/s0(t)

i
μ01(t)

2
, the integral (17) then writes as a pivotal statistic and follows the Van-

Mises law
R 1
0
B21 (t) dt which has been tabulated in the literature (see Knott, 1974). By definition, we have:bC ³bβ, bγ´ < bC (β0, γ0). Denote Ca the asymptotic law of ³ 1bNbγ,1 +

1bNbγ,2
´−1 bC ³bβ, bγ´. If the model is true, we should

have:

H0: Ca <
Z 1

0

B21 (t) dt

Testing that the model is true can be done by testing H0. As H0 only corresponds to an inequality between two

distributions (and not an equality), the test might be not very powerful.

Note that the weights leading to the Cramer-Von Mises statistic depend on the true value of the parameters.

A way to construct the CVM statistic is in two stages (as in GMM). A first set of parameters is estimated without

weights. Then weights are computed using these estimators. A new criterium is then constructed from these weights

and minimized. The value of the criterium at its optimum can be used to test H0.

5 Implementation

5.1 Estimation of the parameters

We now explain how the parameters of the model can be estimated in practice. The theoretical model gives the

specification of zβ,j and rγ,j which forms are known. From these functions, it is possible to calculate the functions
∂rγ,j
∂γ and ∂zβ,j

∂β . The data consist in a set of values xjk for each group j ∈ {1, 2} and for k ∈ {1, ..., Nj}. We order
them in ascending order such that yj1 < ... < y

j
Nj
. We then have some estimators of the quantiles corresponding to

the ranks in the two groups: bλj ³ k
Nj

´
= yjk.

For our minimization program, we need to compute the criterium for any admissible parameters (β, γ) ∈ Φ. In
particular, a couple is not admissible if uγ,1 > uγ,1 or uγ,2 > uγ,2. It is easy to compute uγ,1, uγ,1, uγ,2 and uγ,2 for

any given values of the parameters, as the functions rγ,j are known. This allows us to discard parameters which

are not admissible.

For admissible parameters, we now explain how to compute the criterium. We first rewrite its components as:

bC1 (β, γ) =
1

uγ,1 − uγ,1

Z uγ,1

uγ,1

w1

µ
u− uγ,1
uγ,1 − uγ,1

¶h
zβ,2

³bλ1 (u)´− bλ2 (rγ,2 (u))i2 du
bC2 (β, γ) =

1

uγ,2 − uγ,2

Z uγ,2

uγ,2

w2

µ
u− uγ,2
uγ,2 − uγ,2

¶hbλ1 (rγ,1 (u))− zβ,1 ³bλ2 (u)´i2 du
To approximate the two integrals, we need to compute the differences between transformed quantiles zβ,2

³bλ1 (u)´−bλ2 (rγ,2 (u)) for some u ∈ £uγ,1, uγ,1¤, or bλ1 (rγ,1 (v)) − zβ,1 ³bλ2 (v)´ for some v ∈ £uγ,2, uγ,2¤. We can evaluate
13



bλ1 (u) for the group-1 observed ranks in £uγ,1, uγ,1¤ but we do not have any empirical counterpart for bλ2 (rγ,2 (u)),
since these ranks once transformed by rγ,2 have no reason to match group-2 ranks. Hence, we need to estimatebλ2 (rγ,2 (u)). Conversely, we can evaluate bλ2 (v) for the group-2 observed ranks in £uγ,2, uγ,2¤, but we do not have
any empirical counterpart for bλ1 (rγ,1 (v)) as these ranks once transformed by rγ,1 have no reason to match ranks
in group 1. Hence, we also need to estimate bλ1 (rγ,1 (v)).
In practice, we can compute bλ1 ³ k

N1

´
for k

N1
∈
£
uγ,1, uγ,1

¤
, and bλ2 ³ k

N2

´
for all k

N2
∈
£
uγ,2, uγ,2

¤
. Hence, we

construct estimators of the missing ranks in each group the following way:

• For k
N1
∈
£
uγ,1, uγ,1

¤
, denote k∗ ∈ {1, ..., N2} the integer such that: k∗

N2
< rγ,2

³
k
N1

´
< k∗+1

N2
. The estimator

of λ2
³
rγ,2

³
k
N1

´´
is defined as:

bλ2µrγ,2µ k

N1

¶¶
=

³
k∗+1
N2
− rγ,2

³
k
N1

´´ bλ2 ³k∗+1N2

´
+
³
rγ,2

³
k
N1

´
− k∗

N2

´ bλ2 ³ k∗N2

´
1
N2

• For k
N2
∈
£
uγ,2, uγ,2

¤
, denote k∗ ∈ {1, ..., N1} the integer such that: k∗

N1
< rγ,1

³
k
N2

´
< k∗+1

N1
. The estimator

of λ1
³
rγ,1

³
k
N2

´´
is defined as:

bλ1µrγ,1µ k

N2

¶¶
=

³
k∗+1
N1
− rγ,1

³
k
N2

´´ bλ1 ³k∗+1N1

´
+
³
rγ,1

³
k
N2

´
− k∗

N1

´ bλ2 ³ k∗N1

´
1
N1

We define the vector Vj of the ranks in group j, observed or constructed, sorted in ascending sequence. The total

number of possible ranks in V1 and V2 is the same and equals the total number of observations in the two groupsbNγ = bNγ,1 + bNγ,2. Note that for each i ∈
n
1, ..., bNγ

o
, we have V2 [i] = rγ,2 (V1 [i]). The two components of the

criterium are estimated by:

bC1 (β, γ) =
1

2

bNX
i=2

⎡⎢⎣ w1

³
V1[i]−u1
u1−u1

´ h
zβ,2

³bλ1 (V1 [i])´− bλ2 (V2 [i])i2
+w1

³
V1[i−1]−u1
u1−u1

´ h
zβ,2

³bλ1 (V1 [i− 1])´− bλ2 (V2 [i− 1])i2
⎤⎥⎦ (V1 [i]− V1 [i− 1])

u1 − u1
(18)

bC2 (β, γ) =
1

2

bNX
i=2

⎡⎢⎣ w2

³
V2[i]−u2
u2−u2

´ hbλ1 (V1 [i])− zβ,1 ³bλ2 (V2 [i])´i2
+w2

³
V2[i−1]−u2
u2−u2

´ hbλ1 (V1 [i− 1])− zβ,1 ³bλ2 (V2 [i− 1])´i2
⎤⎥⎦ (V2 [i]− V2 [i− 1])

u2 − u2
(19)

The criterium cannot be minimized directly with usual optimization tools as the criterium is not continuous in γ

(there are some jumps depending on the number of observations which are censored). Hence, the minimization

procedure is decomposed into two stages. For a given admissible γ, it is possible to minimize the criterium with

respect to β using some standard optimization tools as the criterium is usually continuous and derivable wih respect

to β. Then a grid search on γ can be performed.
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5.2 Computation of the test statistic

We now explain how to construct the test statistic
³

1bNbγ,1 +
1bNbγ,2
´−1 bC bw ³bβ, bγ´, where Cw is the criterium corre-

sponding to weights given by: w1 (t) = w2 (s (t)) = 1h
1+z0β0,1

[μ1(t)]
2/s0(t)

i
μ01(t)

2
, bβ and bγ are the consistent estimators

of the parameters obtained when weights equal one (see the previous subsection for their estimation). The number

of uncensored observations bNbγ,j is the number of observations such that their rank is between ubγ,j and ubγ,j. We
need to compute some estimators of the weights. For than purpose, we need to get some estimators of μ1 (t), μ

0
1 (t)

and s0 (t). In fact, we have:

μ1 (t) = zβ0,2 ◦ λγ0,1 (t) = λ2

³
rγ0,2 (t)

´
Hence, an estimator of μ1 (t) is: cμ1 (t) = 1

2

h
zbβ,2 ◦ bλbγ,1 (t) + bλ2 ¡rbγ,2 (t)¢i

where the quantile function bλj are replaced by the estimators given in the previous subsection. We also have:
μ01 (t) =

³
uγ0,1 − uγ0,1

´
λ01
¡
uγ0,1 (t)

¢
z0β0,2 ◦ λγ0,1 (t)

=
³
uγ0,2 − uγ0,2

´
r0γ0,2

¡
uγ0,2 (t)

¢
λ02

³
rγ0,2 (t)

´
Hence, an estimator of μ01 (t) is:

bμ01 (t) = 1

2

⎡⎣ ¡
ubγ,1 − ubγ,1¢ bλ01 (ubγ,1 (t)) z0bγ,2 ◦ bλbγ,1 (t)

+
¡
ubγ,2 − ubγ,2¢ r0bγ,2 (ubγ,2 (t)) bλ02 ¡rbγ,2 (t)¢

⎤⎦
where bλ0j are some estimators of the quantile function derivatives constructed below. Finally, using the expression
of s (t), we can construct an estimator of its derivative:

bs0 (t) = ubγ,1 − ubγ,1
ubγ,2 − ubγ,2 r

0bγ,2 (ubγ,1 (t))
The estimated weights are then:

bw1 (t) = bw2 (s (t)) = 1h
1 + z0bβ,1 [bμ1 (t)]2 /bs0 (t)i bμ01 (t)2

For any given j ∈ {1, 2}, some estimators of the quantile function derivatives bλ0j can be recovered from Siddiqui

(1960), and Bloch and Gartswirth (1968). These estimators can be easily computed in the following way. Consider

the two sets of ordered data: yj1 < ... < y
j
Nj
for j ∈ {1, 2}. For a given u, the estimator writes:

bλ0j (u) = Nj y[k1] − y[k0]k1 − k0
where k1 = [nu+m] (with [•] the integer function) if nu + m < n and k1 = n otherwise, k0 = [nu−m] if
nu −m > 1 and k0 = 1 otherwise. Weights should be estimated for all the ranks used in the computation of the
test statistic with formulas (18) and (19). This means that w1 should be compute for the ranks k

N1
for k = 1, ..., N1

and rbγ,1 ³ k
N2

´
for k = 1, ..., N2. Similarly, w2 should be computed for the ranks k

N2
for k = 1, ..., N2 and rbγ,2 ³ k

N1

´
for k = 1, ..., N1. We finally get the test statistic using (18) and (19).
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6 Monte-Carlo simulations

We now present some Monte-Carlo simulations to assess the performances of our estimators. We consider two

baseline distributions F̃ with different shapes: a normal and a pareto. The baseline distribution is restricted to a

compact support to verify the assumptions of the model. We thus truncate a given percentage of the distribution

on the left and on the right. In the baseline simulation, the truncation is set to be τ = 2.5% on each side. The

distribution in the first group is supposed to be equal to the baseline distribution: F̃ = F1. The distribution in the

second group is derived from the baseline distribution with two transformations. The values are transformed with

an homothecy: zβ (x) = ax+ b where a = 1.2 and b = 1 in the baseline simulation. The ranks are transformed with

a selection process that can be of three different kind (see subection 3.2 for details):

1. Random selection: rγ (u) = 1− (1− u)γ+1, u ∈ [0, 1], with γ = 0.5.

2. Left truncation: rγ (u) = γ + (1− γ)u for u ∈
h
max

³
0, −γ1−γ

´
, 1
i
. We want 10% of the distribution to be

left-truncated. This corresponds to γ = −0.11.

3. Linear selection: rγ (u) = 2γu− γ2u2 with γ = 2.

Data are generated in the following way. We consider that there are Nj observations in group j before any trans-

formation takes place. In the baseline case, we fix N1 = N2 = 10, 000.

For group 1, we draw some rank values u1i, i ∈ {1, .., N1} in a uniform law [τ , 1− τ ] and take the inverse of the

baseline cumulative to generate the values of our variable of interest: y1i = eF−1 (u1i).
For group 2, we draw some rank values u2i, i ∈ {1, ..,N2} in a uniform law [τ , 1− τ ] and assess whether the

corresponding observations should be selected depending on the selection process:

1. Random selection: an observation i is selected with probability (1− ui)γ . Hence, we also draw a series of

values v2i, i ∈ {1, .., N2} in a uniform law [0, 1]. Observation i is selected if v2i 6 (1− ui)γ .

2. Left truncation: observation i is selected if u2i > γ.

3. Linear selection: an observation i with a rank u2i ∈
h
0, 1γ

i
is selected with probability 2γ (1− γu2i). For this

observation, we grow a value v2i in a uniform law [0, 1] and keep the observation if v2i 6 2γ (1− γu2i). An

observation i with rank u2i > 1
γ is not selected and is thus discarded.

For observations still in sample 2 after selection, we generate the values of our variable of interest as y2i =

a eF−1 (u2i) + b.
We then compute the criterium given by (14). In the baseline simulation, we consider that all weights are equal to

one: w1 (t) = 1 and w2 (t) = 1 for all t ∈ [0, 1]. All computation details are given in the previous section on the
implementation.
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We now present the results obtained with the Monte-Carlo simulations for 100 replications. For each coefficient

a, b and γ, we report the estimated coefficient and the root mean-square error (RMSE). We first examine the

case where the baseline distribution is normal. Table 1 shows that for random selection, parameters are not biased

(column 1) and are very accurately estimated (col. 2). Indeed, the mean value of the translation parameter b (.991)

is close to 1 and its RMSE is very small at .033. Similarly, the mean value of the dilatation parameter a (1.196)

stands very close to 1.2 and its RMSE is very small at .014. Finally, the selection parameter γ is estimated still

reasonably well with a mean of close to .5 (value .487) and a RMSE at .058. The test statistic computed with the

true value of the parameters has a median of .103 and a RMSE of .078. As the 5% threshold is 0.461 (see Knott,

1974), the model is accepted for nearly all the iterations. When using the estimated parameters to compute the

test statistic, the median drops to .037 and the RMSE to .020. This suggests a discrepancy in the power of the

test when using the estimated parameters instead of the true (unobserved) ones (see below for more on that).

We assess how the performances of the method vary with the number of observations. Of course, when this number

gets smaller, estimators behave less well. For N1 = N2 = 1000, the estimated parameters are biased (col. 3). The

bias is quite small for the translation and dilatation parameters (8% and 2% of the true value, respectively). It

is larger and significant for the selection parameter (20% of the true value). Also, parameters are less precisely

estimated since the RMSE are more than three times larger than in the baseline case for all the estimated parameters

(col. 4). Conversely, the accuracy increases when the number of observations gets larger. WhenN1 = N2 = 100, 000,

the means of the estimated parameters are nearly equal to their true value (col. 5). The RMSE get very small (col.

6), that is 2.5 times less than in the baseline case.

We then assess how the estimators behave when we change the truncation parameter τ of the baseline distribution.

When τ gets smaller, estimators are less precisely estimated as expected. This is because quantiles at extremes

which enter the minimization criterium are estimated with less accuracy. For τ = 1%, the means of estimated

parameters get slightly away from their true value (col. 7). The discrepancy is the largest for the selection parameters

with a bias that reaches 8% of the true value. The RMSE of all the parameters are also more than 50% larger

(col. 8). Biases get very large when τ = 0%. It even reaches 46% of the true value for the selection parameters

(col. 9). In the same way, the RMSE get large (col. 10). Conversely, we also experimented what happens when the

truncation parameter τ gets larger. The performances improve a bit compared to the baseline case: the means of

estimated parameters are a bit closer from the true value (col. 11) and RMSE are smaller (col. 12).

Finally, as we are mostly interested in the selection process in this paper, we experimented what happens when

the selection parameter varies. Results are still very good for smaller γ taking the values .2 and .05 (col. 13-16).

Note that in all our alternative specifications (col. 3-16), the test statistic hopefully always accepts the model at a

5% level whether it is computed with the true or the estimated value of the parameters.

We then conduct the same kind of analysis for left truncation (Table 2). The method performs very well and give

very accurate results for all alternative specifications. Interestingly, the bias when N1 = N2 = 1, 000 is far smaller

than in the random selection case. Moreover, when there is no truncation of the baseline distribution (τ = 0%), the

difference between the means of estimated parameters and their true value is negligible. These results suggest that
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the method should be very robust for left truncation in the empirical applications (provided that the distributions

in the two groups are close to normal).

We also apply the method in the linear selection case (Table 3). Results are not as good as in the previous cases. In

the baseline specification, there is a significant bias on the estimated parameters. This bias goes up to 20% for the

translation parameter. Also RMSE are very large. The method performs very poorly for N1 = N2 = 1, 000 but give

good results for N1 = N2 = 100, 000. Interestingly, there does not seem to be a bias on the estimated parameters

when τ = 0% even if the RMSE are quite large. This suggests that the truncation of the baseline distribution to

get a bounded support may distort too much the shape of the distribution to get reliable results. When using a

linear selection in practice, it would thus be better not to truncate the baseline distribution (or only very mildly to

avoid extreme values). Finally, the performances of the method are similar when changing the selection Parameter.

We then repeat the same simulation exercise for a Pareto baseline distribution. Results are quite similar to those

obtained with a normal baseline in the three selection specifications, which suggests that the method is quite robust

to the shape of the baseline distribution. Note however that for random selection (Table 4), the biases are larger in

the Pareto case when not truncating (much) the baseline distribution (τ = 1% or τ = 0%). This is not surprising

as the Pareto distribution has some heavy tails and quantiles are more spread. Biases also appear for the Pareto

baseline when the selection is a left truncation and τ = 0% (Table 5), whereas it is not the case for the normal

baseline. Finally, the linear selection performs quite poorly with the Pareto baseline (Table 6).

We finally tried to asss the power of our specification test. We generated the data with a Pareto (resp. normal)

distribution with variance one, but supposed that the baseline was normal (resp. Pareto). As the normal and Pareto

distributions are very different, we expected the specifications to be heavily rejected. In that this is the case for all

specifications (Table 7 and 8).

7 Application

We now apply our method to study the wage difference between males and females. Indeed, there is a large literature

on discrimination against females (see XXX ). In particular, it is said that females have a very limited access to the

best high-skilled jobs and their wage usually stays below a glass ceiling. We want to assess the relative importance

of a uniform discrimination against all females and the glass ceiling effect. Most of the recent literature studying

the glass ceiling uses wage quantile regressions (see Albrecht, Björklund and Vroman, 2003). It is said to be a glass

ceiling if, after controlling for individual characteristics such as the diploma, the wage difference between males

and females is larger, the higher the quantile. The job occupation is usually not included in the controls as the

authors want to capture the barriers to the best high-skilled jobs in the wage difference. Our method departs from

this approach as it does not assess the existence of a glass ceiling from the comparison between separate quantile

regressions, but rather infer it from the whole shapes of the wage distributions of males and females. Indeed, it

models the glass ceiling (and the uniform distribution) as some transformations between the two wage distributions

and estimates the underlying parameters. The two transformations can be described independently in the following
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way:

• The glass ceiling makes the jobs at the top of the wage distribution less accessible for females than for males.
It can be modelled stating that for a given wage ω, the relative chances for females of getting a wage higher

than ω, P (ωf>ω)P (ωm>ω)
, decreases with ω. In fact, we model the relative chances such that:

P (ωf > ω)

P (ωm > ω)
= [P (ωm > ω)]γ (20)

with γ > 0. This specification corresponds to the first example proposed for rγ in section 3. Indeed, denoting

Gf (ω) = G (ωf 6 ω) andGm (ω) = P (ωm 6 ω), we have: Gf (ω) = 1−[1−Gm (ω)]γ+1. RewritingGm (ω) =
u and rγ (u) = Gf

£
G−1m (u)

¤
, we get: rγ (u) = 1− (1− u)γ+1 which is similar to the smooth selection case.

• For a job yielding a given observed wage ωm for males, the uniform discrimination makes females earn only

ωf = ωm + α with α < 0.

Whereas the glass ceiling squeezes the wages obtained by females to the left compared to males, the uniform

discrimination yields a uniform wage loss for all females. We want to estimate the squeezing and translation

parameters, and test the fit of the model.

In our application, we use some administrative data on hourly wages in 2003 from the Déclarations Annuelles

des Salaires (DADS). These data are exhaustive for the private sector. We need to construct a sample of workers

whose characteristics are homogenous, and who are old enough for gender differences in careers to have become

significant. We choose to focus on full-time workers aged between 35 and 40. As we do not have any information

on the diploma, we restrict our attention to white collars (including executives, engineers, managers and marketing

staff). Hence, we will examine the glass ceiling only among skilled workers. Beside, our sample restriction allows

us to avoid the issue of the minimum wage. The wage distributions of males and females are both trimmed by 1%

at each tail to avoid reporting errors.

We select four subsamples corresponding to four differentiated two-digit sectors with enough observations to apply

our method: equipment goods, bank and insurance, computers, and social sector workers. Table 9 reports some

descriptive statistics for these subsamples. The proportion of females varies a lot across sectors. Whereas it is low

for equipment goods (14%) and computers (19%), it goes far higher for bank and insurance (33%), and social sector

workers (44%). Not surprisingly, the average hourly wage is the highest in the bank-and-insurance sector, followed

by computers, equipment goods, and social sector (education and health). In all sectors, the average hourly wage

is lower for females than for males. The mean wage difference is the highest in the bank-and-insurance sector (26%

which correspond to 8.7 euros). In other sectors, the mean wage difference is much lower going down to 8.7% (1.7

euros) in the social sector, 5.7% (1.5 euros) for computers and finally 4.5% (1.0 euros) for equipment goods. In fact,

wage differences between men and women occur for the whole shape of the wage distributions. Figures 1-4 show

that for all sectors, the wage distributions of males and females are unimodal. However, for bank and insurance,

females have a far higher peak than males and they are concentrated at the bottom of the overall wage distribution.

Their distribution looks squeezed to the left and/or left-translated. The distributions in the social sector and for
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computers share the same pattern except that the peak for females is closer to the peak for males. Hence, curves

for males and females look more similar. Finally, for equipment goods, the peak is slightly higher for males than

for females. The wage distribution for females however still looks translated to the left compared to that of males.

We then estimate the parameters of the model and bootstrap the standard errors and confidence intervals with

replacement for 1, 000 replications. Results are reported in Table 10. They show that the translation parameter is

negative and significant for all the four sectors. This suggests some uniform discrimination against females. The

effect is the highest for computers (1.1 euros) and the lowest for equipment goods (0.5 euros). In fact, the union

agreements applied in the sector of equipment goods grant workers within a socio-professional category some wages

which are nearly equivalent. This may explain the lower discrimination against females. Such union agreements

are also applied in the computer sector but jobs are heterogenous. Some give access to bonuses whereas others do

not. There may be a selection process such that wages with bonuses are mostly attributed to males. This would

give rise to discrimination.

Interestingly, the squeezing parameter is positive and significant for all the four sectors. It suggests a glass ceiling

effect. The effect is the highest for bank and insurance, and the lowest for equipment goods. It is possible to construct

some meaningful quantities from the squeezing parameter. Indeed, consider the wage ω0 at the last decile of the

distribution of males, that is the wage such that: P (ωm > ω0) = 0.1. Put differently, 10% of males get a wage higher

than ω0. The corresponding proportion for females is P (ωf > ω0) = 0.1
1+γ . This proportion ranges from 3.0% in

the sector of bank and insurance (which is very small) to 7.6% in the sector of equipment goods (which is significantly

below ten percent). Another way to quantify the squeezing is to estimate the glass ceiling effect on the wage of a

female at some given quantiles of the wage distribution of males. In fact, rewriting (20), it is possible to show that,

because of the glass ceiling, a female who would earn x was she a male is going to get y = λm

h
1− [1−Gm (x)]

1
γ+1

i
where λm is the quantile function for males. We compute the wage loss y − x at the first decile, the median and
the last decile of the male wage distribution. This loss writes: λm

h
1− [1− q]

1
γ+1

i
−λm (q) respectively for q = 0.1,

0.5 and 0.9. Results reported in Table 11 show that not surprisingly the wage loss at the first decile is smaller than

the loss due to the uniform discrimination. This is because there is nearly no glass ceiling for lower wages. At the

median, the glass ceiling effect is larger than the uniform discrimination effect only in two sectors (the social, and

bank and insurance sectors). Finally, the effect of the glass ceiling is very important at the last decile in all sectors,

except maybe equipment goods. In all sectors, it is much larger than the effect of the uniform discrimination.

Whereas, females at the last decile incur a loss of 1.7 euros in the sector of equipment goods, their loss gets higher

than 3 euros in the computer and social sectors. The loss is very large in the bank and insurance sector reaching

12.3 euros. In fact, the important squeezing in the sector of bank and insurance is not surprising as the white-collar

population is very heterogenous in banks. Whereas most males are hired from the start as white collars, many

females are hired in lower positions but have some carrier plans which allow them to become white collars after a

while. In this context, good positions and job tenure allow males to get far higher wages than females within the

white-collar category.
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We also computed the test statistic to assess whether the model explains well the wage differences between males

and females. Results show that the test statistic is below the 5% threshold (value 0.46136) for equipment goods,

computers and social sector. Hence, the uniform discrimination and the glass ceiling effects would be enough to

explain the wage differences in these sectors. By contrast, the test statistic is far above the 5% threshold for bank

and insurance. This suggests that some other types of mechanisms are at stake in that sector. A reason may be

that bank and insurance do not have the same union agreements.

We then tried to assess whether one type of discrimination only (uniform or glass ceiling) is enough to explain the

difference in wage distributions between males and females for sectors for which the test statistic did not reject

the specification when the two types of discrimination are included. When introducing only a translation, the

specification is heavily rejected in all sectors (see Table 12). When introducing only the squeezing, the specification

is also rejected although not so heavily in the equipment goods and social sectors (see Table 13). This suggests

that both a uniform discrimination and a glass ceiling would occur. We finally tried to explain the difference

in wage distributions with another specification, namely a uniform discrimination (translation) coupled with a

discrimination that makes females loose a given share of their wage (dilatation). This is a transformation of values

that writes zβ = ay + b, whereas there is no transformation of ranks. The test statistic reported in Table 14

accepts the specification only for the social sector although the statistic value is far larger than for the specification

with translation and squeezing. This suggests that the glass ceiling is more compatible with the data than a

discrimination yielding a wage proportional loss.

8 Conclusion

In this paper, we were interested in comparing the distributions of a continuous outcome between two groups. We

considered specifications where the two distributions are related through some parametrized transformations of

values and ranks. This type of specifications covers cases where the outcome is observed only for some selected

individuals and the selection depends on the rank of the individuals in the distribution of their group. In fact, our

specification can result from a specific class of theoretical models that we explicited.

We proposed a method based on quantiles to estimate the parameters of the value and rank transformations. This

method can be decomposed in two steps. First, we estimated the quantiles of the two distribution non parametrically.

Second, we minimized the distance between the transformed quantiles of the two distributions. We then derived

the asymptotic distribution of the estimators and proposed a specification test that allows to assess whether the

model specification is compatible with the data.

Monte Carlo simulations were conducted to evaluate the quality of our method. They showed that the estimators

perform very well as long as the number of observations in each group is at least a few thousands. We finally

applied our method to study the differences in the wage distributions between males and females. The goal was

to quantify the effect of the glass ceiling and a uniform discrimination against females. Results showed that both

types of discriminations lead to a wage loss for females.
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Our method can be extended in several ways. We plan to include individual explanatory variables in the model.

In that case, the quantiles functions of the two distributions will be conditional on these variables and may be

estimated semi-parametrically using quantile regressions instead of sample quantile as we did in our setting. We

also want to examine how the model can be written in a intertemporal framework where the distributions of the

two groups are observed at several periods in time.

9 Appendix: asymptotics

We first propose two lemmas which will be used in the proofs proposed in the appendix.

Lemma 4 Under assumptions A1-A5b, bλ(k)j converges uniformely in probability to λ
(k)
j , where bλ(k)j =

dkbλj
duk

and

λ
(k)
j =

dkλj
duk

, for k = 0, 1, 2.

Proof. Denote kj (u, t) =
∂KNj

∂t (u, t). We have:

bλ(k)j (u)− λ
(k)
j (u) = Skj (u) +D

k
j (u)

with Skj (u) =
1R
0

heλj (t)− λj (t)
i
∂kkj
∂uk

(u, t) dt the smoothing of the error between the sample quantile and the true

quantile value, and Dk
j (u) =

1R
0

λj (t)
∂kkj
∂uk

(u, t) dt− λ
(k)
j (u) a deterministic bias. We have:

¯̄
Skj (u)

¯̄
6Mk (u,Nj)

1Z
0

¯̄̄eλj (t)− λj (t)
¯̄̄
dt

Corollary 21.5 p307 in Van der Vaart (1998) ensures that sup
u∈[0,1]

¯̄̄eλj (u)− λj (u)
¯̄̄
= o

¡
N−αj

¢
for any α < 1/2 as Nj

tends to infinity. We can choose α = θk+ε < 1/2 with ε > 0 as θk < 1/2. Hence,
1R
0

¯̄̄eλj (t)− λj (t)
¯̄̄
dt = o

³
N−θk−εj

´
.

Using A5b or A5c, we get sup
u∈[0,1]

¯̄
Skj
¯̄
6 o

¡
N−εj

¢ P→ 0. Using A5a or A5d, we also have: sup
u∈[0,1]

¯̄
Dk
j

¯̄ P→ 0. Hence:

sup
u∈[0,1]

¯̄̄̄bλ(k)j (u)− λ
(k)
j (u)

¯̄̄̄
6 sup
u∈[0,1]

¯̄
Skj (u)

¯̄
+ sup
u∈[0,1]

¯̄
Dk
j (u)

¯̄ P→ 0

and bλ(k)j P→ λ
(k)
j uniformely.

This result can be used to prove the following lemma:

Lemma 5 For any sequence (βn, γn) ∈ Φ, where n is a bivariate index for the number of observations in the two
groups n = (N1, N2) with N1 = 1, 2, ... and N2 = 1, 2, ..., such that (βn, γn)

P→ (β0, γ0), we have:bC (βn, γn) P→ C (β0, γ0) = 0

∂ bC
∂(β,γ)0

¯̄̄
(βn,γn)

P→ ∂C
∂(β,γ)0

¯̄̄
(β0,γ0)

∂2 bC
∂(β,γ)∂(β,γ)0

¯̄̄
(βn,γn)

P→ ∂2C
∂(β,γ)∂(β,γ)0

¯̄̄
(β0,γ0)
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Proof. We now show that: bC1 (βn, γn) P→ C1 (β0, γ0) = 0 (the proof is similar for bC2 (β, γ)). First note that we
have: bC1 (β, γ) = R 10 w1 (t)h (β, γ, t)2 dt with h (β, γ, t) = zβ,2 ³bλ1 (uγ,1 (t))´− bλ2 (rγ,2 (uγ,1 (t))). Hence:

bC1 (βn, γn)− C1 (β0, γ0) =

Z 1

0

w1 (t)
h
h (βn, γn, t)

2 − h (β0, γ0, t)
2
i
dt

=

Z 1

0

w1 (t) [h (βn, γn, t) + h (β0, γ0, t)] [h (βn, γn, t)− h (β0, γ0, t)] dt

As Φ is compact and and z is continous in all its arguments, zβn,2 is bounded. Moreover, zβ0,2,
bλ1 and λ1 are also

bounded. Thus there is an m1 (which does not depend on n) such that |h (βn, γn, t) + h (β0, γ0, t)| 6 m1. Hence:

bC1 (βn, γn) ≤ m1

Z 1

0

w1 (t) |h (βn, γn, t)− h (β0, γ0, t)| dt

We have:

|h (βn, γn, t)− h (β0, γ0, t)| ≤
¯̄̄
zβn,2

³bλ1 ¡uγn,1 (t)¢´− zβn,2 ¡λ1 ¡uγn,1 (t)¢¢¯̄̄
+
¯̄
zβn,2

¡
λ1
¡
uγn,1 (t)

¢¢
− zβn,2

¡
λ1
¡
uγ0,1 (t)

¢¢¯̄
+
¯̄
zβn,2

¡
λ1
¡
uγ0,1 (t)

¢¢
− zβ0,2

¡
λ1
¡
uγ0,1 (t)

¢¢¯̄
Using the mean value theorem and the boundedness of ∂zβn,2

∂x , there is an m2 such that:¯̄̄
zβn,2

³bλ1 ¡uγn,1 (t)¢´− zβn,2 ¡λ1 ¡uγn,1 (t)¢¢¯̄̄ 6 m2

¯̄̄bλ1 ¡uγn,1 (t)¢− λ1
¡
uγn,1 (t)

¢¯̄̄
Using lemma 4, we have: sup

u∈[0,1]

¯̄̄bλ1 ¡uγn,1 (t)¢− λ1
¡
uγn,1 (t)

¢¯̄̄ P→ 0. Thus, we have:

Z 1

0

w1 (t)
¯̄̄
zβn,2

³bλ1 ¡uγn,1 (t)¢´− zβn,2 ¡λ1 ¡uγn,1 (t)¢¢¯̄̄ dt P→ 0

As dλ1du is bounded thanks to assumption A6, there is also an m3 such that:¯̄
zβn,2

¡
λ1
¡
uγn,1 (t)

¢¢
− zβn,2

¡
λ1
¡
uγ0,1 (t)

¢¢¯̄
6 m3

¯̄
uγn,1 (t)− uγ0,1 (t)

¯̄
Using the definition of uγ,1 and the fact that γn

P→ γ0, it is easy to show that:Z 1

0

w1 (t)
¯̄
uγn,1 (t)− uγ0,1 (t)

¯̄
dt

P→ 0

and thus: Z 1

0

w1 (t)
¯̄
zβn,2

¡
λ1
¡
uγn,1 (t)

¢¢
− zβn,2

¡
λ1
¡
uγ0,1 (t)

¢¢¯̄
dt

P→ 0

Finally, as ∂zβ,2
∂β is bounded, there is an m4 such that:¯̄

zβn,2
¡
λ1
¡
uγ0,1 (t)

¢¢
− zβ0,2

¡
λ1
¡
uγ0,1 (t)

¢¢¯̄
≤ m4 |βn − β0|

As βn
P→ β0, we have: Z 1

0

w1 (t) |βn − β0| dt
P→ 0

23



and thus: Z 1

0

¯̄
zβn,2

¡
λ1
¡
uγ0,1 (t)

¢¢
− zβ0,2

¡
λ1
¡
uγ0,1 (t)

¢¢¯̄
dt

P→ 0

Combining all the intermediary results, we finally get:Z 1

0

w1 (t)
¯̄̄
zβn,2

³bλ1 ¡uγn,1 (t)¢´− zβ0,2 ¡λ1 ¡uγ0,1 (t)¢¢¯̄̄ dt P→ 0

In the same way, we can write that:

bλ2 ¡rγn,2 ¡uγn,1 (t)¢¢− λ2
¡
rγ0,2

¡
uγ0,1 (t)

¢¢
= bλ2 ¡rγn,2 ¡uγn,1 (t)¢¢− λ2

¡
rγn,2

¡
uγn,1 (t)

¢¢
+λ2

¡
rγn,2

¡
uγn,1 (t)

¢¢
− λ2

¡
rγn,2

¡
uγ0,1 (t)

¢¢
+λ2

¡
rγn,2

¡
uγ0,1 (t)

¢¢
− λ2

¡
rγ0,2

¡
uγ0,1 (t)

¢¢
Using the same line of proof as above using the properties of rγ,2 instead of zβ,2, we get:Z 1

0

w1 (t)
¯̄̄bλ2 ¡rγn,2 ¡uγn,1 (t)¢¢− λ2

¡
rγ0,2

¡
uγ0,1 (t)

¢¢¯̄̄
dt

P→ 0

This is enough to show that: bC1 (βn, γn) P→ 0.

The same line of argument applies to show that: ∂ bC
∂(β,γ)0

¯̄̄
(βn,γn)

P→ ∂C
∂(β,γ)0

¯̄̄
(β0,γ0)

and ∂2 bC
∂(β,γ)∂(β,γ)0

¯̄̄
(βn,γn)

P→
∂2C

∂(β,γ)∂(β,γ)0

¯̄̄
(β0,γ0)

using the boundedness of first, second and third-order derivatives of zγj ,2, rγj ,2 and λj .

9.1 Consistency of the estimated parameters (theorem 1)

We show the consistency of the estimated parameters using a reductio ad absurdum.

We suppose that
³bβ, bγ´9 (β0, γ0). The identification assumption A3 yields that: ∃! (β0, γ0) |C (β0, γ0) = 0 . Since

C is continuous and C (β0, γ0) = 0, then C
³bβ, bγ´ 9 0. This means that: ∃ε, η > 0 such that ∀N0, ∃ N > N0|

P
³
C
³bβ, bγ´ > η

´
> ε.

Using Lemma (4), we also have that: bλj P→ λj uniformely in u for j = 1, 2. This yields that for any (β, γ),bC (β, γ) P→ C (β, γ). Suppose that the values of (β, γ) ∈ Φ where Φ is a compact set. Hence, bC (β, γ) P→ C (β, γ)

uniformely on Φ. Hence:

∃N1|∀N > N1, ∀ (β, γ) ∈ Φ, P
³¯̄̄ bC (β, γ)− C (β, γ)¯̄̄ > η

2

´
<

ε

2
(21)

We fix N0 = N1 and select N > N0 such that P
³
C
³bβ, bγ´ > η

´
> ε.

Applying (21) to
³bβ, bγ´, we get: P ³¯̄̄ bC ³bβ, bγ´− C ³bβ, bγ´¯̄̄ > η

2

´
< ε

2 .

Applying (21) to (β0, γ0), we get: P
³¯̄̄ bC (β0, γ0)¯̄̄ > η

2

´
< ε

2 .

As bβ, bγ minimizes bC, we have 0 ≤ bC ³bβ, bγ´ ≤ bC (β0, γ0) and we get: P ³ bC ³bβ, bγ´ > η
2

´
< ε

2 .
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We have: C
³bβ, bγ´ = C ³bβ, bγ´− bC ³bβ, bγ´+ bC ³bβ, bγ´. Hence, C ³bβ, bγ´ > η, implies:

¯̄̄
C
³bβ, bγ´− bC ³bβ, bγ´¯̄̄ > η

2

or bC ³bβ, bγ´ > η
2 . This yields:

P
³
C
³bβ, bγ´ > η

´
< P

³n¯̄̄
C
³bβ, bγ´− bC ³bβ, bγ´¯̄̄ > η

2

o
∪
n bC ³bβ, bγ´ > η

2

o´
≤ P

³¯̄̄ bC ³bβ, bγ´− C ³bβ, bγ´¯̄̄ > η

2

´
+ P

³ bC ³bβ, bγ´ > η

2

´
<

ε

2
+

ε

2
= ε

This contradicts the fact that P
³
C
³bβ, bγ´ > η

´
> ε. ¥

9.2 Asymptotic law of the estimated parameters (theorem 2)

In order to derive the asymptotic law of the estimated parameters, we do a Taylor expansion:

∂ bC
∂ (β, γ)

¯̄̄̄
¯
(bβ,bγ)

=
∂ bC

∂ (β, γ)

¯̄̄̄
¯
(bβ,bγ)

− ∂ bC
∂ (β, γ)

¯̄̄̄
¯
(β0,γ0)

+
∂ bC

∂ (β, γ)

¯̄̄̄
¯
(β0,γ0)

We have ∂ bC
∂(β,γ)

¯̄̄
(bβ,bγ) = 0 since

³bβ, bγ´ is the minimum of bC. We do a Taylor expansion of the first right-hand side
term and we get:

0 =
∂ bC

∂ (β, γ)

¯̄̄̄
¯
(β0,γ0)

+

⎛⎝ bβ − β0bγ − γ0

⎞⎠T

∂2 bC
∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β,γ)

(22)

with β between β0 and bβ, and γ between γ0 and bγ. Hence:⎛⎝ bβ − β0bγ − γ0

⎞⎠ = −

⎛⎝ ∂2 bC
∂ (β, γ) ∂ (β, γ)

T

¯̄̄̄
¯
(β,γ)

⎞⎠−1 ∂ bC
∂ (β, γ)

T

¯̄̄̄
¯
(β0,γ0)

Using lemma 5, we get that:⎛⎝ ∂2 bC
∂ (β, γ) ∂ (β, γ)

0

¯̄̄̄
¯
(β,γ)

⎞⎠−1 P→
Ã

∂2C

∂ (β, γ) ∂ (β, γ)
0

¯̄̄̄
(β0,γ0)

!−1

We now establish the asymptotic law of ∂ bC
∂(β,γ)

¯̄̄
(β0,γ0)

= ∂ bC1
∂(β,γ)

¯̄̄
(β0,γ0)

+ ∂ bC2
∂(β,γ)

¯̄̄
(β0,γ0)

. Consider first the derivative

of bC1with respect to γ:
∂ bC1
∂γ

¯̄̄̄
¯
(β0,γ0)

=

Z 1

0

w1 (t)
∂
h
zβ,2 ◦ bλγ,1 (t)− bλ2 ◦ rγ,2 (t)i2

∂γ

¯̄̄̄
¯̄̄
(β0,γ0)

dt

= −2
Z 1

0

w1 (t)

⎛⎜⎝
∂rγ,2
∂γ

¯̄̄
uγ0,1(t)

bλ02 ◦ rγ0,2 (t)
+

∂(uγ,1(t))
∂γ

¯̄̄
γ
0

[bλ0γ0,1(t)∗z0β0,2◦bλγ0,1(t)−r0γ0,2(t)∗bλ02◦rγ0,2(t)]
uγ0,1−uγ0,1

⎞⎟⎠ hzβ0,2 ◦ bλγ0,1 (t)− bλ2 ◦ rγ0,2 (t)id

25



As the quantiles bλj and their derivatives bλ0j converge to their true value, and ∂(uγ0,1(·))
∂t is bounded on [0, 1], the

second term in the paranthesis on the right-hand side tends to zero. Hence, we get:

∂ bC1
∂γ

¯̄̄̄
¯
(β0,γ0)

∼ −2
Z 1

0

w1 (t)

Ã
∂rγ,2
∂γ

¯̄̄̄
uγ0,1(t)

bλ02 ◦ rγ0,2 (t)
!h
zβ0,2 ◦ bλγ0,1 (t)− bλ2 ◦ rγ0,2 (t)idt

Deriving bC1 with respect to β, we get:
∂ bC1
∂β

¯̄̄̄
¯
(β0,γ0)

= 2

Z 1

0

w1 (t)
∂zβ,2
∂β

¯̄̄̄
bλγ0,1(t)

h
zβ0,2 ◦ bλγ0,1 (t)− bλ2 ◦ rγ0,2 (t)idt

Let bV(β,γ),1 (t) = 2
⎛⎜⎝ ∂zβ,2

∂β

¯̄̄
bλγ,1(t)

− ∂rγ,2
∂γ

¯̄̄
uγ,1(t)

bλ02 ◦ rγ,2 (t)
⎞⎟⎠, we have

∂ bC1
∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

∼
Z 1

0

w1 (t) bV(β0,γ0),1 (t) hzβ0,2 ◦ bλγ0,1 (t)− bλ2 ◦ rγ0,2 (t)idt

Since bλγ,1 (·) P→ λγ,1 (·) and bλ02 (·) P→ λ02 (·) uniformly on [0, 1], bV(β,γ),1 (·) P→ V(β,γ),1 (·) uniformly on [0, 1], with

V(β,γ),1 (t) = 2

⎛⎜⎝ ∂zβ,2
∂β

¯̄̄
λγ,1(t)

− ∂rγ,2
∂γ

¯̄̄
uγ,1(t)

λ02 ◦ rγ,2 (t)

⎞⎟⎠. Using also (2), we get:
∂ bC1

∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

∼
Z 1

0

w1 (t)V(β0,γ0),1 (t)
h
zβ0,2 ◦ bλγ0,1 (t)− zβ0,2 ◦ λγ0,1 (t)− ³bλ2 ◦ rγ0,2 (t)− λ2 ◦ rγ0,2 (t)

´i
dt

(23)

We can then apply Theorem 1.3 p429 in Falk (1985) to the distribution f
γ0,1

for t ∈ [0, 1]:q bNγ0,1fγ0,1

³
λγ0,1 (t)

´³bλγ0,1 (t)− λγ0,1 (t)
´

d
=⇒ B11 (t) (24)

where B11 is a Brownian bridge. Thus, using Slutsky’s theorem,q bNγ0,1

³
zβ0,2 ◦ bλγ0,1 (t)− zβ0,2 ◦ λγ0,1 (t)´ d

=⇒
z0β0,2 ◦ λγ0,1 (t)
f
γ0,1
◦ λγ0,1 (t)

B11 (t)

Consider the quantile function λ2◦rγ0,2 (t) for t ∈ [0, 1], the corresponding density is given by f2
³
λ2 ◦ rγ0,2 (t)

´
/r0γ0,2 (t).

Applying Theorem 1.3 p429 in Falk (1985) to this distribution, we get:

q bNγ0,2

f2

³
λ2 ◦ rγ0,2 (t)

´
r0γ0,2 (t)

³bλ2 ◦ rγ0,2 (t)− λ2 ◦ rγ0,2 (t)
´

d
=⇒ B21 (t) (25)
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where B21 is a Brownian bridge independent of B11. Thus,q bNγ0,2

³bλ2 ◦ rγ0,2 (t)− λ2 ◦ rγ0,2 (t)
´

d
=⇒

r0γ0,2 (t)

f2

³
λ2 ◦ rγ0,2 (t)

´B21 (t)
Define μ1 (t) = zβ0,2 ◦ λγ0,1 (t) = λ2 ◦ rγ0,2 (t), we have

μ01 (t) =
z0β0,2 ◦ λγ0,1 (t)
f
γ0,1
◦ λγ0,1 (t)

=
r0γ0,2 (t)

f2

³
λ2 ◦ rγ0,2 (t)

´
Hence q bNγ0,1

³
zβ0,2 ◦ bλγ0,1 (t)− zβ0,2 ◦ λγ0,1 (t)´ d

=⇒ μ01 (t)B11 (t)q bNγ0,2

³bλ2 ◦ rγ0,2 (t)− λ2 ◦ rγ0,2 (t)
´

d
=⇒ μ01 (t)B21 (t)

Hence, using (23), we obtain

∂ bC1
∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

d
=⇒

Z 1

0

w1 (t)V(β0,γ0),1 (t)μ
0
1 (t)

⎡⎣ B11 (t)q bNγ0,1

− B21 (t)q bNγ0,2

⎤⎦dt
Denote:

B1 (t) =

s
1bNγ0,1

+
1bNγ0,2

⎡⎣ B11 (t)q bNγ0,1

− B21 (t)q bNγ0,2

⎤⎦ (26)

B1 is a Brownian bridge. Hence,Ã
1bNγ0,1

+
1bNγ0,2

!− 1
2

∂ bC1
∂ (β, γ)

T

¯̄̄̄
¯
(β0,γ0)

d
=⇒

Z 1

0

w1 (t)V(β0,γ0),1 (t)μ
0
1 (t)B1 (t) dt (27)

Switching groups 1 and 2, it is possible to use the same line of proof to show that:Ã
1bNγ0,1

+
1bNγ0,2

!− 1
2

∂ bC2
∂ (β, γ)

T

¯̄̄̄
¯
(β0,γ0)

d
=⇒

Z 1

0

w2 (t)V(β0,γ0),2 (t)μ
0
2 (t)B2 (t) dt (28)

where μ2 (t) = zβ0,1 ◦ λγ0,2 (t), and B2 is a brownian bridge defined by:

B2 (t) =

s
1bNγ0,1

+
1bNγ0,2

⎡⎣ B22 (t)q bNγ0,2

− B12 (t)q bNγ0,1

⎤⎦ (29)

with B12 and B12 are some independent Brownian bridges given by:

q bNγ0,2fγ0,2

³
λγ0,2 (t)

´³bλγ0,2 (t)− λγ0,2 (t)
´

d
=⇒ B22 (t) (30)

q bNγ0,1

f1

³
λ1 ◦ rγ0,1 (t)

´
r0γ0,1 (t)

³bλ1 ◦ rγ0,1 (t)− λ1 ◦ rγ0,1 (t)
´

d
=⇒ B12 (t) (31)
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We finally get:Ã
1bNγ0,1

+
1bNγ0,2

!− 1
2

⎛⎝ bβ − β0bγ − γ0

⎞⎠
d
=⇒ −

⎛⎝ ∂2C

∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

⎞⎠−1µZ 1

0

w1 (t)V(β0,γ0),1 (t)μ
0
1 (t)B1 (t) dt+

Z 1

0

w2 (t)V(β0,γ0),2 (t)μ
0
2 (t)B2 (t) dt

¶

The estimated parameters asymptotically follow a normal law as they write as a sum of brownian bridges. In fact,

we have: Ã
1bNγ0,1

+
1bNγ0,2

!− 1
2

⎛⎝ bβ − β0bγ − γ0

⎞⎠ d
=⇒ N

¡
0,Γ−1ΩΓ−1

¢
(32)

with Γ = ∂2C
∂(β,γ)∂(β,γ)0

¯̄̄
(β0,γ0)

and Ω = V
³R 1

0
w1 (t)V(β0,γ0),1 (t)μ

0
1 (t)B1 (t) dt+

R 1
0
w2 (t)V(β0,γ0),2 (t)μ

0
2 (t)B2 (t) dt

´
.

We are now going to compute Γ and Ω.

We first calculate the expression of Γ. We have:

∂2C1

∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

=

Z 1

0

w1 (t)
∂
£
zβ,2 ◦ λγ,1 (t)− λ2 ◦ rγ,2 (t)

¤2
∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

dt

=

Z 1

0

w1 (t)V(β0,γ0),1 (t)
∂
£
zβ,2 ◦ λγ,1 (t)− λ2 ◦ rγ,2 (t)

¤
∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

dt

=
1

2

Z 1

0

w1 (t)V(β0,γ0),1 (t)V
T
(β0,γ0),1

(t) dt

∂2C2

∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

=
1

2

Z 1

0

w2 (t)V(β0,γ0),2 (t)V
T
(β0,γ0),2

(t) dt

Hence:

Γ =
1

2

Z 1

0

h
w1 (t)V(β0,γ0),1 (t)V

T
(β0,γ0),1

(t) + w2 (t)V(β0,γ0),2 (t)V
T
(β0,γ0),2

(t)
i
dt

We now compute Ω. Note first that B1 and B2 are tied. Indeed we show below that for a given t ∈ [0, 1], it is
possible to find an s ∈ [0, 1] such that B1 (t) = B2 (s). This value of s verifies the equation:

uγ0,1 (t) = rγ0,1
¡
uγ0,2 (s)

¢
= rγ0,1 (s) (33)

or equivalently:

uγ0,2 (s) = rγ0,2
¡
uγ0,1 (t)

¢
= rγ0,2 (t) (34)

Indeed, if s verifies (33), we have: λγ0,1 (t) = λ1
¡
uγ0,1 (t)

¢
= λ1

³
rγ0,1 (s)

´
. According to the definitions of B11

and B12 given respectively by (24) and (31), this yields: B11 (t) = B12 (s). Since s verifies (34), we also have:

λγ0,2 (s) = λ2
¡
uγ0,2 (s)

¢
= λ2

³
rγ0,2 (t)

´
. According to the definitions of B21 and B22 given respectively by (25)
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and (30), this yields: B21 (t) = B22 (s). Using the expressions of B1 and B2 given by (26) and (29), we finally

obtain: B1 (t) = B2 (s). Using (33), we thus have for all t ∈ [0, 1]:

B2 (s) = B1

Ã
rγ0,1 (s)− uγ0,1
uγ0,1 − uγ0,1

!
(35)

We are now going to rewrite the integral
R 1
0
w2 (s)V(β0,γ0),2 (s)μ

0
2 (s)B2 (s) ds as an integral of B1 using (35). We

make the change in variable: t =
rγ0,1

(s)−uγ0,1
uγ0,1−uγ0,1

. We thus have:

Z 1

0

w2 (s)V(β0,γ0),2 (s)μ
0
2 (s)B2 (s) ds =

Z 1

0

w2 (s)V(β0,γ0),2 (s)μ
0
2 (s)

ds

dt
B1 (t) dt (36)

From (??) and (34), we also have:

μ2(s) = zβ0,1

h
λγ0,2 (s)

i
= zβ0,1

£
λ2
¡
uγ0,2 (s)

¢¤
= zβ0,1

h
λ2

³
rγ0,2 (t)

´i
= zβ0,1 [μ1 (t)]

Deriving this expression with respect to t, we obtain:

μ02(s)
ds

dt
= z0β0,1 [μ1 (t)]μ

0
1 (t)

Hence:Z 1

0

w1 (t)V(β0,γ0),1 (t)μ
0
1 (t)B1 (t) dt+

Z 1

0

w2 (s)V(β0,γ0),2 (s)μ
0
2 (s)B2 (s) ds =

Z 1

0

g (t)B1 (t) dt (37)

where:

g (t) = w1 (t)V(β0,γ0),1 (t)μ
0
1 (t) + w2 (s (t))V(β0,γ0),2 (s (t))μ

0
2 (s (t))

ds (t)

dt

=
h
w1 (t)V(β0,γ0),1 (t) + w2 (s (t))V(β0,γ0),2 (s (t)) z

0
β0,1

[μ1 (t)]
i
μ01 (t)

with s (t) =
rγ0,2

(t)−uγ0,2
uγ0,2−uγ0,2

. Let T{g}(u) =
R 1
u
g (t) dt−

R 1
0
tg (t) dt. We have:

Z 1

0

g (t)B1 (t) dt

=

Z 1

0

g (t) (W1 (t)− tW1 (1)) dt

=

Z 1

0

Z t

0

g (t) dW1 (u) dt−
Z 1

0

g (t) tdt

Z 1

0

dW1 (u)

=

Z 1

0

T {g} (u) dW1 (u)

where W1 (·) is a Wiener process. As for any u, dW1 (u) follows a normal law N (0, du), and the processes dW1 (u),

u ∈ [0, 1] are independent by definition, we finally get:

Ω = V

µZ 1

0

g (t)B1 (t) dt

¶
=

Z 1

0

T {g} (u)T {g} (u)0 du
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9.3 Asymptotic law of the minimization criterium (theorem 3)

9.3.1 Theorem 3

We now establish the asymptotic law of the minimization criterium. Applying a Taylor expansion, we get:

bC ³bβ, bγ´ = bC (β0, γ0) + ∂ bC
∂ (β, γ)

T

¯̄̄̄
¯
(β0,γ0)

⎛⎝ bβ − β0bγ − γ0

⎞⎠
+
1

2

⎛⎝ bβ − β0bγ − γ0

⎞⎠T

∂2 bC
∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β0,γ0)

⎛⎝ bβ − β0bγ − γ0

⎞⎠+O
⎡⎣Ã 1bNγ0,1

+
1bNγ0,2

!−3/2⎤⎦ (38)

We first determine the asymptotic law of bC (β0, γ0). For that purpose we decompose it into bC1 (β0, γ0) andbC2 (β0, γ0). Injecting (2) into (11), we get:
bC1 (β0, γ0) = Z 1

0

w1 (t)
h
zβ0,2

³bλγ0,1 (t)´− zβ0,2 ³λγ0,1 (t)´− hbλ2 ³rγ0,2 (t)´− λ2

³
rγ0,2 (t)

´ii2
dt (39)

Applying the same line of proof as when establishing (27), we obtain:Ã
1bNγ0,1

+
1bNγ0,2

!−1 bC1 (β0, γ0) d
=⇒

Z 1

0

w1 (t)μ
0
1 (t)

2
B1 (t)

2
dt (40)

Injecting (3) into (13), we get:

bC2 (β0, γ0) = Z 1

0

w2 (t)
hbλ1 ³rγ0,1 (t)´− λ1

³
rγ0,1 (t)

´
−
h
zβ0,1

³bλγ0,2 (t)´− zβ0,1 ³λγ0,2 (t)´ii2 dt (41)

Applying the same line of proof as when establishing (28), we obtain:Ã
1bNγ0,1

+
1bNγ0,2

!−1 bC2 (β0, γ0) d
=⇒

Z 1

0

w2 (t)μ
0
2 (t)

2B2 (t)
2 dt (42)

Combining (40) and (42), we get:Ã
1bNγ0,1

+
1bNγ0,2

!−1 bC (β0, γ0) d
=⇒

Z 1

0

w1 (t)μ
0
1 (t)

2
B1 (t)

2
dt+

Z 1

0

w2 (t)μ
0
2 (t)

2
B2 (t)

2
dt (43)

Using the same line of argument as that to get from (36) to (37), we obtain:

Z 1

0

w1 (t)μ
0
1 (t)

2
B1 (t)

2
dt+

Z 1

0

w2 (s)μ
0
2 (s)

2
B2 (s)

2
ds =

Z 1

0

h (t)B21 (t) dt

where:

h (t) =
h
w1 (t) + w2 (s (t)) z

0
β0,1

[μ1 (t)]
2
/s0 (t)

i
μ01 (t)

2

Using (22), the second right-hand side term in (38) rewrites:

−

⎛⎝ bβ − β0bγ − γ0

⎞⎠T

∂2C

∂ (β, γ) ∂ (β, γ)T

¯̄̄̄
¯
(β,γ)

⎛⎝ bβ − β0bγ − γ0

⎞⎠
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It is equivalent to:

−

⎛⎝ bβ − β0bγ − γ0

⎞⎠T

Γ

⎛⎝ bβ − β0bγ − γ0

⎞⎠
The third right-hand side term in (38) is equivalent to:

1

2

⎛⎝ bβ − β0bγ − γ0

⎞⎠T

Γ

⎛⎝ bβ − β0bγ − γ0

⎞⎠
Hence, the sum of the second and third right-hand side terms in (38) is equivalent to:

−1
2

⎛⎝ bβ − β0bγ − γ0

⎞⎠T

Γ

⎛⎝ bβ − β0bγ − γ0

⎞⎠

We have:
³

1bNγ0,1 + 1bNγ0,2
´− 1

2

⎛⎝ bβ − β0bγ − γ0

⎞⎠ d
=⇒ Y with Y following a normal distribution N

¡
0,Γ−1ΩΓ−1

¢
. Denote

Λ the Cholesky matrix such that: Γ−1ΩΓ−1 = ΛΛ0 and Y such that: Y = ΛX, where V (X) = I. Hence:

−1
2

Ã
1bNγ0,1

+
1bNγ0,2

!−1⎛⎝ bβ − β0bγ − γ0

⎞⎠T

Γ

⎛⎝ bβ − β0bγ − γ0

⎞⎠ ∼ −1
2
X 0Λ0ΓΛX

Consider an orthonormal decomposition of Λ0ΓΛ such that Λ0ΓΛ = ΞDΞ0 where Ξ verifies ΞΞ0 = I and D is

the diagonal matrix of the eigenvalues of Λ0ΓΛ. We have: X 0Λ0ΓΛX = eX 0D eX with eX = ΞX. Here, V
³ eX´ =

ΞV (X)Ξ0 = ΞIΞ0 = ΞΞ0 = I. Thus, eX 0D eX =
P
k

Dk eX2
k where Dk is the k

th eigenvalue of Λ0ΓΛ (this is a special

case of the Cochran’s theorem). Finally:

−1
2

Ã
1bNγ0,1

+
1bNγ0,2

!−1⎛⎝ bβ − β0bγ − γ0

⎞⎠T

Γ

⎛⎝ bβ − β0bγ − γ0

⎞⎠ d
=⇒ −1

2

X
k

Dk eX2
k

where −12
P
k

Dk eX2
k is a weighted sum of chi-squares.
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