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Abstract: Clogg and Eliason (1987) proposed a simple method for taking account of survey weights 
when fitting log-linear models to contingency tables. The method includes a simple function of the 
weights as an offset term in the model. This paper investigates the properties of this method. A 
rationale is provided for the method when the weights are constant within the cells of the table. For 
more general cases, however, it is shown that the standard errors produced by the method are invalid, 
contrary to claims in the literature. The method is compared to the pseudo maximum likelihood method 
both theoretically and through an empirical study of social mobility, relating daughter’s class to father’s 
class using data from the ‘Formation & Qualification Professionnelle’ survey, conducted in France in 
1985. The method of Clogg and Eliason (1987) is found to underestimate standard errors 
systematically. It is also observed empirically to produce standard errors which are virtually the same 
as ignoring the weights entirely. The paper concludes by recommending against the use of this 
method, despite its simplicity. The limitations of the method may be overcome by using the pseudo 
maximum likelihood method. 
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1. Introduction 
 
Sample survey data provide the basis of much statistical modelling in the social sciences. Classical 
methods of fitting statistical models can, however, be invalid in the presence of complex sampling 
designs involving, for example, unequal weights, stratification or multi-stage sampling. To address this 
concern, there has been considerable development of methods which do take account of complex 
designs (e.g. Rao and Thomas, 1988; Skinner, Holt and Smith, 1989; Korn and Graubard, 1999; 
Chambers and Skinner, 2003). One approach, pseudo maximum likelihood (PML) estimation (Binder, 
1983; Skinner, 1989), has found increasingly wide application and is now implemented in many 
statistical software packages, such as SPSS Complex Samples

TM
, STATA (version 10+), LISREL 

(version 8.7+) and MPlus (version 3+). One advantage of this approach is its generality; it is applicable 
to a very broad class of complex sampling schemes and to a wide range of statistical modelling 
methods, especially those based upon generalized linear models but also other methods such as 
latent variable modelling (Asparouhov, 2005). 
In this paper we shall consider an alternative approach proposed by Clogg and Eliason (1987), 
hereafter referred to as CE, for use with one specific class of modelling methods: log-linear modelling 
of contingency tables. Although their proposal featured as just one of many ideas in their paper, it has 
received continuing attention, for example in the standard text book of Agresti (2002, p.391) and in the 
extension to latent class models of Vermunt and Magidson (2007). The primary rationale for the 
approach is that it provides a simple way of incorporating survey weights into the estimation of the log-
linear model to give “appropriate parameter estimates and standard errors” (Agresti, 2002, p.391). It 
has also been claimed that the approach leads to valid model testing procedures (Vermunt and 
Magidson, 2007). 
An acknowledged shortcoming of the CE approach is that it fails to take account of stratification or 
multi-stage sampling in the estimation of standard errors. Since it is very common for social surveys to 
employ multi-stage sampling and since the impact of multi-stage sampling on standard errors is often 
much greater than the impact of unequal weights, this is a major disadvantage of the CE approach 
relative to the PML approach. Nevertheless, surveys do arise where there is no clustering and the 



survey weights exhibit appreciable variability. Moreover, there do exist software packages, for which 
log-linear modelling procedures via the PML approach are not available but the CE approach can be 
implemented easily (SAS

® 
, for example, appears to fall in this category at present). 

The purpose of this paper is to investigate the properties of the CE approach and to compare them to 
those of the PML approach. For an earlier discussion of this comparison, see Patterson et al. (2002) 
and Vermunt (2002). 
The paper is organised as follows. In section 2, we introduce the log-linear model and explain how 
unequal probability sampling can affect the fitting of this model. This discussion is designed to 
motivate the CE approach which is set out in section 3. The theoretical properties of the CE approach 
are assessed in section 4 under a sampling design, chosen to be favourable to the CE approach. The 
PML approach is set out briefly in section 5 and then compared theoretically to the CE approach in 
section 6. An empirical comparison is provided in section 7 using data from the ‘Formation & 
Qualification Professionnelle’ survey, conducted in France in 1985. Conclusions are drawn in section 
8. 
 
 

2. The Log-linear Model and the Impact of Sampling 
 
As in Clogg and Eliason (1987) (hereafter CE), we may express a log-linear model for a contingency 
table as a matrix equation: 

   log( )
s s

Xµ λ=  ,      (1) 

where log( )
s

µ  is an 1M ×  vector containing the logarithms of the expected frequencies for the 

M cells in the table, X  is an M p×  model matrix (or design matrix) containing specified values, 

usually either 0 or 1, and 
s

λ  is a 1p× vector of unknown parameters, where p M≤ . 

We subscript 
s

µ and 
s

λ  by s to denote sample. This highlights a basic problem with this model for 

sample survey data: the parameters of the model are dependent upon the sampling scheme if, as is 

common, 
s

µ  is defined in terms of the expected sample frequencies. To explore this dependence, 

suppose instead that the log-linear model is defined in terms of the expected population frequencies. 
To emphasize the distinction we remove the subscript s and write the population-level model as: 

   log( ) Xµ λ= ,       (2) 

where we suppose the same design matrix X  applies. For simplicity, consider a sampling scheme 

where all units in the k
th
 cell of the table are included in the sample with probability 

k
π  and let log( )π  

be the 1M ×  vector containing the log( )
k

π . Then we may write: 

   log( ) log( ) log( )
s

µ π µ= + ,     (3) 

since the expected sample frequency in the k
th
 cell is given by 

k
π  times the expected population 

frequency. Hence from (2) and (3), we may write: 

   log( ) log( )
s

Xµ π λ= + .     (4) 

Provided the structure of X  is appropriate, the expression in (4) may be equated to the original 
expression in (1) for some special sampling schemes, for example: 

(i) equal probability selection:  if all the 
k

π  are equal then log( )π  will be a multiple of a vector of ones 

and if the first column of X  is specified to be a vector of ones, the vectors 
s

λ  and λ  will only differ in 

their first element. Such a definition of X  is standard (e.g. Agresti, 2002, Ch.8) where the first 

element of 
s

λ  represents the total sample size and the remaining elements determine the proportions 

falling into the different cells of the table. 
(ii) disproportionate stratified sampling according to one of the cross-classifying variables in a multi-

way table:  provided X  is defined to include the main effects for the stratifying variable, the vectors 

s
λ  and λ  will only differ with respect to those elements corresponding to these main effect terms. 

Thus, for some simple sampling schemes, it may be reasonable to follow the traditional approach of 
fitting model (1) to the sample frequencies, provided the design matrix is specified to capture the 
differential sampling effects and some of the parameter estimates are interpreted as absorbing effects 



of sampling, e.g. the grand mean term in example (i) and the main effects for the stratifying variable in 
example (ii). This approach is not suitable, however, for more complex sampling schemes. 
 
 

3. The Clogg and Eliason Approach 
 
The CE approach may be motivated by equation (4). Suppose the expected sample frequencies in a 

contingency table are given in the vector 
s

µ  and that the log-linear model in (4) holds. Then, provided 

the inclusion probabilities 
k

π  are known and provided it is reasonable to make a standard ‘sampling 

model’ assumption, such as a Poisson or multinomial distribution, the parameter vector λ  may simply 

be estimated in a conventional way, e.g. using maximum likelihood (ML), by treating log( )π  as an 

offset term in the model. (See Agresti, 2002, p.385 for a discussion of the use of offset terms.) 
We shall generally assume in this paper that the inclusion probabilities are known, typically via survey 
weights. The more critical issue here is whether the sample frequencies obey a conventional ‘sampling 
model’. In this paper we shall take the conventional sampling model to be a Poisson distribution (e.g. 
Agresti, 2002, sect. 4.3.1), although equivalent arguments could be presented using the multinomial 
distribution (the main alternative conventional approach). Whether the sample frequencies do follow a 
Poisson distribution depends upon the nature of the sampling scheme. We suppose that at the 

population level, the population frequencies 
k

N  in cells k do indeed follow Poisson distributions, that 

is they are outcomes of independent Poisson random variables with means 
k

µ . A sampling scheme 

which favours the CE approach is Bernoulli sampling within cells, i.e. where each of the 
k

N  units in 

cell k is included independently in the sample with probability 
k

π . In this case, standard theory for the 

Poisson distribution implies that the sample frequencies 
k

n  will also be the outcomes of independent 

Poisson random variables, now with means 
sk k k

µ π µ= . In other words, the sample frequencies will 

follow a conventional sampling model. It follows that, under this Bernoulli sampling scheme, the 

approach of fitting the model in a conventional way via expression (4) using log( )π  as an offset is 

valid. 
The assumption that the inclusion probabilities are uniform within cells is very restrictive, however, and 
CE address the general case where survey weights vary between individual units. In this case, they 

replace the cell-level inclusion probabilities 
k

π  appearing in log( )π  in (4) by an estimator of the 

sampling fraction /
k k

n N  in cell k given by ˆ/
k k k

z n N= , where ˆ
k

N  is the sum of survey weights 

across sample units in cell k. CE then claim that if the model: 

   log( ) log( )
s

z Xµ λ= +      (5) 

is fitted using conventional ML methods, treating log( )z  (the 1M ×  vector containing the log( )
k

z ) 

as an offset, then inference about the parameter vector λ , and in particular the implied standard 

errors, will be appropriate. 
We have seen that this claim is valid in one special case, i.e. where Bernoulli sampling is employed 
within cells and where the survey weights (assumed to be inverse inclusion probabilities) are constant 
within cells. We argue, however, that this claim is not valid in general for two main reasons. 
First, as noted in the introduction, complex sampling schemes impact on standard errors not only 
through unequal weights but also, and often more importantly, through other features of the design 
such as cluster sampling. It is well known that cluster sampling can seriously inflate standard errors. 
The use of the offset term in the CE approach takes no account of potential variance inflation from 
designs such as cluster sampling and thus will generally lead to invalid standard errors. 
The second reason why we argue that the CE approach will, in general, be invalid is that it does not 
adequately take account of the effects of weight variation. Since this is the main purpose of the 
discussion in CE, it is the theme which we shall focus on. In the next section, we consider a sampling 
scheme which is designed to be as favourable to the CE approach as possible, while imposing no 
constraints on the variability of the weights. 
 
 



4. Theoretical Properties of CE Approach under a Poisson 
Sampling Design 

 

4.1. The Poisson Sampling Design 
 
We saw in the previous section that the CE approach is valid if the population units are selected 
independently with probabilities which are constant within cells. In this section, we retain the 
assumption that population units are selected independently. This favours the CE approach, in 
particular by ruling out cluster sampling designs which might lead to underestimation of standard 
errors by the CE approach. We now, however, allow the inclusion probabilities to vary between units 
within cells. A sampling design which selects units independently with unequal probabilities is 
sometimes called a Poisson sampling design (e.g. Hájek, 1981). Since we shall treat the survey 
weights as reciprocals of the inclusion probabilities, we are also allowing the weights to vary between 
units. 
For simplicity, suppose that there is only a finite number of possible values of the sample inclusion 

probabilities, denoted 1 2, ,...,
H

π π π . We shall refer to the different parts of the population which are 

sampled with different probabilities as strata, i.e. units in stratum h are sampled with probability 
h

π  

( 1, 2,...,h H= ). Note, however, that the Poisson sampling scheme does not ensure a fixed sample 

size within each stratum and hence this design does not correspond to standard stratified sampling. 

Let 
kh

N  be the population count in cell k in stratum h, so that 
1

H

k kh
h

N N
=

= ∑ . In order to construct a 

framework where the CE approach is natural, we shall assume that the 
kh

N  are generated 

independently as Poisson random variables: ( )
kh kh

N Poisson µ∼ . This implies that 

( )
k k

N Poisson µ∼ , where 
1

H

k kh
h

µ µ
=

= ∑ , and also that the numbers 
kh

n  of sample units which fall 

into cell k and stratum h are independently distributed as: ( )
kh h kh

n Poisson π µ∼ . It follows that the 

distribution of 
1

H

k kh
h

n n
=

= ∑  is also Poisson, as assumed in the CE approach, i.e. 

   ( )
k sk

n Poisson µ∼ , where 
1

H

sk h kh
h

µ π µ
=

= ∑ .   (6) 

 

4.2. Point Estimation under the CE Approach 
 

The parameter vector λ  is estimated under the CE approach using ML estimation based upon (5), 

treating the ˆ/
k k k

z n N=  as fixed. As discussed by Vermunt (2002), the log likelihood used in the CE 

approach may be expressed as: 

   log ( ) { log[ ( )] ( )}k k sk sk
L nλ µ λ µ λ= −∑ ,   (7) 

where, from (5), ( ) exp( )
sk k k

x zµ λ λ=  and 
k

x  denotes the k
th
 row of X . The point estimator in the 

CE approach is denoted ˆ
CE

λ  and is the value of λ  which maximizes (7). 

We show in the Appendix that, providing the model in (2) holds, then ˆ
CE

λ  is consistent for λ  (under a 

suitable asymptotic framework). Thus, the CE approach does make use of the weights to correct for 
bias from unequal probability sampling, at least in large samples. Note, however, that if any of the cells 

are empty ( 0
k

n = ) then 
k

z  is not defined and thus the estimator ˆ
CE

λ  is not defined. 

 

4.3. Standard Error Estimation under the CE Approach 
 

CE propose to obtain standard errors by treating the expression in (7) as a likelihood function with 
k

z  

treated as fixed. It is shown in the Appendix that this approach leads to a variance-covariance matrix 



of ˆ
CE

λ  of the form 
1

J
−� , where 'k sk k k

J x xµ= ∑�  and this matrix may be estimated by replacing the 

sk
µ  by 

k
n . The CE standard errors are obtained as the square roots of the diagonal elements of this 

matrix. 

We show in the Appendix that in fact, if we properly take account of the fact that 
k

z  is not fixed, the 

(large sample) variance-covariance matrix of ˆ
CE

λ  can be expressed as: 

   ˆ( )
CE

v λ  
1 1 2 1{ ' }k k sk k k

J J c x x Jµ− − −= + ∑� � � ,   (8) 

where 
2

k
c  is the squared coefficient of variation of the survey weights within cell k. Thus the CE 

approach will generally underestimate the standard error of each parameter estimate. It will only 
provide valid standard errors if the survey weights are constant within cells as discussed in section 2, 
but this is not a case of great interest since the CE approach was specifically formulated to deal with 
situations where the weights vary. 

When the distribution of the weights is the same in each cell k so that 
2 2

k
c c=  does not depend on k, 

expression (8) simplifies further to 
2 1ˆ( ) (1 )

CE
v c Jλ −= + � . Hence, in large samples, the CE estimator 

underestimates the variance-covariance matrix by a factor 
2(1 )c+  and, in particular, the variance of 

each element of ˆ
CE

λ  is underestimated by this factor. In the general case when the 
2

k
c  depend on k, 

the degree of underestimation may be interpreted as an average of the 
21
k

c+ . 

One special case under the assumed sampling design, where the distribution of the weights is the 

same in each cell k, arises when the strata are independent of the cell variables, so that 
kh k h

µ µ φ= , 

where 
h

φ  denotes the probability of falling in stratum h and 1
h

φ =∑ . This case may be called ‘non-

informative stratification’. In this case, 
2

k
c  is equal to the overall coefficient of variation of the weights 

across all cells: 

   
2 2 1

1 1

1
H H

k h h h h
h h

c c π φ π φ−

= =

= = −∑ ∑ . 

The above results imply some possible modifications of the CE approach. For example, if the weights 
are judged to be roughly independent of the cell variables then the CE standard errors could be 

modified by multiplying them by a factor 
2ˆ1 c+  where ĉ  is the sample coefficient of variation of the 

weights. We do not pursue this idea, however. 
 
 

5. Pseudo Maximum Likelihood (PML) Approach 
 

The point estimator of λ  in the pseudo maximum likelihood approach, denoted ˆ
PML

λ , is obtained by 

fitting the population level model (2) to the weighted population counts ˆ
k

N . This may be achieved by 

using any of the standard algorithms used for ML estimation of log-linear models. The standard errors 

of any of the elements of ˆ
PML

λ  may be obtained by any of the usual variance estimation methods 

used in survey sampling. See Rao and Thomas (1988, sect. 5.2) for details and, in particular, the use 
of linearization variance estimators. We consider just the jackknife method for the case of stratified 

multi-stage sampling. This involves constructing replicate sets of survey weights 
( )hc

w  corresponding 

to each of the primary sampling units (PSUs) 1, 2,...,
h

c n= , within each stratum 1, 2,...,h H= . The 

set of weights 
( )hc

w  is constructed by removing from the sample all units from PSU c  in stratum h  

and inflating the weights of all other units in this stratum by the factor /( 1)
h h

n n −  (Rust and Rao, 

1996). For each set of replicate weights 
( )hc

w , λ  is estimated in the same way that the point 

estimator of interest λ̂  is computed except that the original survey weights are replaced by the set of 



replicate weights 
( )hc

w . The resulting estimator is denoted 
( )ˆ hcλ . This is repeated for each set of 

replicate weights and the jackknife estimator of the variance of λ̂  is then given by: 

   
( ) ( )

1 1

1ˆ ˆ ˆ ˆ ˆ( ) ( )( ) '
hnH

hc hch
j

h ch

n
v

n
λ λ λ λ λ

= =

 −
= − − 

 
∑ ∑    (9) 

There is a number of variants of the jackknife estimator. In particular, it is possible to reduce the 

computation by calculating 
( )ˆ hcλ  only for 1

h
n −  values of c  within each stratum h . The jackknife 

estimator is consistent for the variance of λ̂  under general assumptions about the survey weights and 

the stratified multi-stage design (Shao and Tu, 1995, Ch.6). Note that this property applies to a broad 

class of estimators λ̂ , including not just ˆ
PML

λ  but also ˆ
CE

λ , for example. 

 
 

6. Theoretical Comparison of the CE and PML Approaches 
 

6.1. Comparison of Standard Error Estimators 
 
As we showed in section 4.3, the standard error estimators produced by the CE approach are 
generally biased and inconsistent as a result either of non-independence between the selection of 
different units, e.g. via cluster sampling, or because of unequal survey weights within the cells of the 
table. On the other hand, the PML method is designed so that the standard error estimators are 
consistent. 
 

6.2. Comparison of Point Estimators 
 

The point estimators, ˆ
PML

λ  and ˆ
CE

λ , for the two approaches are not identical (as noted by Vermunt, 

2002) but they are both consistent for the true value of λ  if the model in (2) holds. If the model in (2) 

does not hold then, as the sample size increases, ˆ
PML

λ  and ˆ
CE

λ  will not in general converge to the 

same quantities. Whether the limiting value of either ˆ
PML

λ  or ˆ
CE

λ  is of interest depends on the 

scientific objectives. One possible advantage of ˆ
PML

λ  is that it can be shown that its limiting value 

does not depend on the sampling scheme (cf. comments of Patterson et al., 2002). 

We next compare the variances of the elements of ˆ
PML

λ  and ˆ
CE

λ  under the assumption that the 

model in (2) is correct. To do this we write both estimators as solutions of the estimating equations: 

   ˆ{ exp( )} 0k k k k k
a N x xλ− =∑      (10) 

where for ˆ
PML

λ  we set 1
k

a =  and for ˆ
CE

λ  we set 
k k

a z=  (see Appendix). 

The variance of any linear combination of the elements of the vector λ  solving (10) is minimized by 

setting 
k k

a x  proportional to: 

   
exp( )1

ˆvar( )

k

k

x

N

λ

λ

∂

∂ 1

1

1
k kH

h kh
h

xµ
π µ−

=

=
∑

. 

Hence the optimal choice of 
k

a  is 

   
1

1

/
H

kopt k h kh
h

a µ π µ−

=

∝ ∑  

and an estimate of the optimal 
k

a  is 1 2
ˆ /

kopt k k
a S S= , where 1k

S  is the sum of weights and 2k
S  is the 

sum of squared weights in cell k. One special case arises when the weights are constant in which 

case 
kopt

a  is constant and both ˆ
PML

λ  and ˆ
CE

λ  are equal and optimal. 



The CE point estimator ˆ
CE

λ  is optimal if the weights are constant within cells. In general, however, the 

CE approach takes no account of weight variation within cells and thus will not be optimally efficient. 

The PML point estimator ˆ
PML

λ  will be close to efficient when the weights are variable but tend to be 

unrelated to the cells as, for example, in the case of non-informative stratification mentioned in section 

4.3. There seems no reason to expect ˆ
CE

λ  to tend to be always more efficient than ˆ
PML

λ  nor vice 

versa. 
 
 

7. Empirical Comparison of the CE and PML Approaches 
 
We now set out to compare the CE and PML approaches empirically. We use data from the 1985 
Enquête Formation & Qualification Professionnelle, a survey with complex sampling design and post 
hoc reweighting that was conducted by the French Statistical Office and for which a stratum variable 
and a weight variable are available in the data file. In the following sections, we briefly describe the 
sampling characteristics of the survey, then the data and contingency table we use and the log-linear 
model we consider. Finally, we systematically compare the corresponding CE and PML estimators and 
standard errors. 
 

7.1. Sampling Characteristics of the Survey 
 
The 1985 Formation & Qualification Professionnelle survey was designed to be representative of the 
population of ordinary households in the 1982 census and covered all employed and unemployed 
persons, whatever their age, and all persons not in the labour market aged between 13 and 69 in 
1982. The survey was administered to a stratified sample of 46,500 individuals drawn from the 1982 
census with sampling fractions that varied between about 1/200 and 1/2500 (Laulhé and Soleilhavoup, 
1987; Gollac, Laulhé and Soleilhavoup, 1988a, 1988b). 
More precisely, the survey sample was drawn from the (very large) 1982 master sample in order to 
concentrate interviews within the geographical areas covered by the team of interviewers of the 
French Statistical Office so as to minimize travelling costs. The sampling was divided into two phases. 
First, a sample of 38,000 dwellings was drawn from the master sample so that all dwellings in the 
population had an equal probability of inclusion of 1/200. Then the individuals in these dwellings were 
stratified according to nationality in two categories (French, foreigners), position as regards the labour 
market, socio-economic class and age group. Second, the final sample of 46,500 individuals was 
drawn from the 73 resulting strata using different (sub-)sampling fractions, ranging from 13% to 100%, 
determined by the objectives of the survey. As a result, the probabilities of inclusion of the different 
individuals in the census population ranged between 1/200 and 1/2690. These probabilities are 
referred to as the initial sampling fractions. The geographical clustering in the master sample is not 
identified in the file and will be ignored in our analyses for reasons of practicality and simplicity. The 
possible clustering of individuals in dwellings will also be treated as negligible since it will happen with 
very small probability (especially since we shall restrict attention to a subsample of women in a 
particular age range). In summary, the sample will be treated as being derived by (disproportionate) 
stratified simple random sampling. 
The interviews were completed between mid April and the end of June 1985 with 39,233 completed 
questionnaires collected. To take account of not only the disproportionate stratification but also other 
sources of missing data (because of unknown addresses, long term absences and refusals), weights 
were constructed as ratios of census counts to counts of survey respondents within weighting classes 
defined by the strata cross-classified with residential area at the census (rural, urban, or Parisian).  
The resulting final weight variable is available for each case in the data file, for use in producing 
estimates for the population. 
 

7.2. Data, Contingency Table and Log-linear Model 
 
For our analysis we restrict attention to the sub-sample of 5,159 women, with French nationality at the 
date of the survey, aged between 35 and 59 at the end of December 1985, currently employed at the 
date of the survey, and who reported information about their current socio-economic class and their 
father’s socio-economic class when they stopped attending school or university on a regular basis. 
Table 1 displays characteristics of this sub-sample across the strata. The 5,159 women belong to 18 



different strata with initial sampling fractions varying between 1/310 and 1/2500. The distribution is 
very uneven as only 2 women appear in the least numerous stratum while 1,581 belong to the most 
numerous one. For descriptive purposes, Table 1 also presents the mean and standard deviation of 
the final weight in each stratum. The discrepancy in each stratum between the average final weight 
and the inverse of the initial sampling fraction reflects the adjustments that result from missing data, 
and the standard deviation of the final weight reflects the variability of the case-by-case weighting 
within each stratum. 
 

Table 1 – Characteristics of the sub-sample used for analysis in the different strata 

Stratum 
(status as recorded in master sample in 1982; note that status in 
1985 might differ, e.g. on nationality, and age will increase by 3 

years) 

Sample 
size 

Initial 
sampling 
fraction 

Mean of 
final 

weight 

Standard 
deviation of 
final weight 

French women, in the labour market, farmers, aged 32 – 51 234 1/940 959.85 123.67 
French women, in the labour market, farmers, aged 52+ 83 1/1250 1245.55 47.53 
French women, in the labour market, artisans and shopkeepers, 
32 – 51 

223 1/1040 1144.54 87.61 

French women, in the labour market, artisans and shopkeepers, 
52 + 

28 1/1360 1487.79 120.05 

French women, in the labour market, company managers and 
higher-grade professionals, 32 – 51 

747 1/310 344.25 44.21 

French women, in the labour market, company managers and 
higher-grade professionals, 52+ 

94 1/340 388.76 67.22 

French women, in the labour market, lower-grade professionals, 
32 – 51 

1064 1/600 669.29 111.77 

French women, in the labour market, lower-grade professionals, 
52 + 

101 1/620 720.25 76.06 

French women, in the labour market, non manual workers, 32 – 
51 

1581 1/830 934.72 129.21 

French women, in the labour market, non manual workers, 52 + 214 1/830 946.18 111.74 
French women, in the labour market, manual workers, 32 – 51 535 1/760 839.90 74.58 
French women, in the labour market, manual workers, 52 + 60 1/1080 1193.80 50.60 
French women, in the labour market, unemployed who never 
worked before 

13 1/400 491.69 93.49 

French women, students 7 1/900 1000.14 110.70 
French women, who were previously in the labour market, less 
than 70 

2 1/2270 2464.00 247.49 

Other French women, out of the labour market, 32 – 51 146 1/2500 2794.81 620.64 
Other French women, out of the labour market, 52 + 17 1/2500 2794.76 389.26 
Foreign women, in the labour market, employed or unemployed, 
32 – 51 

10 1/730 831.20 189.88 

Total 5159 - 850.34 451.33 

 
Our analysis is based on the 7 x 7 two-way contingency table that cross-classifies women’s socio-
economic class with their father’s socio-economic class when they stopped attending school or 
university on a regular basis. The mobility table uses a discrete and unordered socio-economic 
classification defined as follows: (1) higher-grade salaried professionals; (2) company managers and 
liberal professions; (3) lower-grade salaried professionals; (4) artisans and shopkeepers; (5) non-
manual workers; (6) foremen and manual workers; (7) farmers. Table 2 presents both unweighted 
frequencies and weighted frequencies in the mobility table after rescaling the latter to the exact sample 
size. 
We aim at analysing the structure and strength of the association between father’s socio-economic 
class and daughter’s socio-economic class in 1985 within French society. For that purpose, we use 
the log-linear model proposed by Hauser (1978, 1980) that identifies the two-way interaction effects by 

constraining some of them to be equal across cells of the contingency table. Assuming that i  and j  

respectively index father’s class and daughter’s class, that the cells )j,i(  are assigned to K  

mutually exclusive and exhaustive subsets and that each of those sets shares a common interaction 

parameter kδ , the logged expected frequency in cell )j,i(  of the mobility table is expressed as 

follows: 

  kjiijmLog δγβα +++=  if the cell )j,i(  belongs to subset k . 

Thus, aside from total (α ), row ( iβ ), and column ( jγ ) effects, each expected frequency is 

determined by only one interaction parameter ( kδ ) which “reflects the density of mobility or immobility 



in that cell relative to that in other cells in the table” (Hauser, 1980, p.416). The interaction parameters 
of the model may therefore “be interpreted as indexes of the social distance between categories of the 
row and column classifications” (Hauser, 1980, p.416). 
 

Table 2 – Unweighted frequencies and weighted (rescaled) frequencies in the mobility table 
 
 
                  Daughter’s 
class 
 
Father’s class 

 
 

Frequency 
1 2 3 4 5 6 7 Total 

1 Higher-grade salaried 
  professionals 

Unweighted 
Weighted 

 

164.00 
81.23 

 

25.00 
13.01 

 

136.00 
113.18 

 

12.00 
15.35 

 

59.00 
66.32 

 

9.00 
8.08 

 

0.00 
0.00 

 

405.00 
297.17 

 
2 Company managers and 
  liberal professions 

Unweighted 
Weighted 

 

56.00 
28.78 

 

27.00 
11.72 

 

37.00 
38.22 

 

14.00 
14.46 

 

28.00 
32.45 

 

3.00 
2.65 

 

3.00 
7.01 

 

168.00 
135.29 

 
3 Lower-grade salaried 
  professionals 

Unweighted 
Weighted 

 

95.00 
48.08 

 

16.00 
11.44 

 

161.00 
129.70 

 

15.00 
22.79 

 

115.00 
131.79 

 

18.00 
18.20 

 

4.00 
4.77 

 

424.00 
366.78 

 
4 Artisans and shopkeepers Unweighted 

Weighted 
 

97.00 
52.25 

 

35.00 
21.35 

 

219.00 
174.45 

 

78.00 
118.41 

 

200.00 
223.37 

 

35.00 
39.57 

 

8.00 
14.27 

 

672.00 
643.67 

 
5 Non-manual workers Unweighted 

Weighted 
 

59.00 
30.18 

 

7.00 
3.68 

 

145.00 
120.03 

 

32.00 
53.42 

 

182.00 
216.57 

 

29.00 
28.65 

 

3.00 
4.17 

 

457.00 
456.70 

 
6 Foremen and manual 
  workers 

Unweighted 
Weighted 

 

128.00 
64.18 

 

18.00 
14.88 

 

419.00 
361.46 

 

124.00 
184.12 

 

930.00 
1065.19 

 

339.00 
355.76 

 

37.00 
47.06 

 

1995.00 
2092.66 

 
7 Farmers Unweighted 

Weighted 
 

38.00 
20.29 

 

8.00 
5.63 

 

164.00 
134.71 

 

73.00 
101.98 

 

342.00 
394.83 

 

136.00 
140.49 

 

277.00 
368.80 

 

1038.00 
1166.73 

 

Total Unweighted 
Weighted 

637.00 
324.99 

136.00 
81.71 

1281.00 
1071.75 

348.00 
510.54 

1856.00 
2130.52 

569.00 
593.40 

332.00 
446.08 

5159.00 
5159.00 

 
Note: Weighted frequencies are rescaled to the sample size by multiplying them by the ratio 5159/4386881. 

 
A previous paper (Vallet, 2005) relied on sociological hypotheses to build such a model of the father-

daughter mobility table with 7=K  interaction parameters. The allocation of the interaction effects 

across the cells of the contingency table that characterizes the postulated model is presented in the 
upper part of Table 3. 
 

Table 3 – Initial model and final model for the structure of the association in the mobility table 
 

Initial model 
1 2 3 4 5 6 7 

1 – Higher-grade salaried professionals II III IV V VI VII VII 

2 – Company managers and liberal professions III II IV IV VI VII VII 

3 – Lower-grade salaried professionals IV IV IV V V VI VII 

4 – Artisans and shopkeepers V IV V IV V VI VI 

5 – Non-manual workers VI VI V V V V VI 

6 – Foremen and manual workers VII VII VI VI V IV V 

7 – Farmers VII VII VII VI VI V I 

 

Final model 
1 2 3 4 5 6 7 

1 – Higher-grade salaried professionals II II III IV V VI VII 

2 – Company managers and liberal professions II II III III V VI IV 

3 – Lower-grade salaried professionals III III III IV IV V VI 

4 – Artisans and shopkeepers IV III IV III V V V 

5 – Non-manual workers V V IV IV IV V V 

6 – Foremen and manual workers VI VI V IV IV III IV 

7 – Farmers VII VI VI IV V IV I 

 
Note: Rows and columns in the matrices respectively correspond to father’s socio-economic class and daughter’s socio-
economic class. Among the interaction effects, I is supposed to be the strongest and VII the weakest. 

 



In our underlying hypotheses, we assumed that the association between origin class and destination 
class is symmetrical across the main diagonal, and we also emphasized that three aspects must be 
considered to describe the structure and strength of the association: the relative desirability of different 
socio-economic class positions; the relative advantages afforded to individuals by different socio-
economic class origins; and the relative barriers that face individuals in seeking access to different 
socio-economic class positions. Although this initial model did not satisfactorily fit the data on 
conventional criteria of statistical significance, the expected frequencies were generally close to the 
observed frequencies. On the basis of an examination of residuals, a few modifications were 
introduced to reallocate some cells to a different interaction parameter (Vallet, 2005). The final model, 

with again 7=K  interaction parameters, that resulted from this process and proved to satisfactorily fit 

the data is presented in the lower part of Table 3. 
For the initial and final log-linear models, we now compare estimates and standard errors obtained in 
four different ways: the standard ML approach for the tables of unweighted frequencies and of 
weighted rescaled frequencies; the CE approach; and the PML approach. 
 

7.3. Computation 
 
To implement the first three approaches, we used both the CATMOD and GENMOD procedures in SAS

®
 

software and obtained exactly the same results. To implement the CE approach, we computed ijz  as 

the ratio of the unweighted frequency to the weighted rescaled frequency in cell )j,i(  and then 

introduced )z(Log ij  as an offset in the log-linear model (see section 3). As ijz  cannot be defined for 

cell (1,7) since it is empty in Table 2, we decided to treat this cell as a structural zero for all four 
approaches. 
No SURVEY procedure for log-linear modelling is available in the SAS

®
 software that could be used for 

a direct implementation of the PML approach. For that purpose, we therefore use the CATMOD SAS
®
 

procedure in the context of the SASMOD module of the IVEware software (Raghunathan, Solenberger 
and Van Hoewyk, 2002). SASMOD is a SAS macro that provides a framework for performing complex 
design analysis, with or without missing data, for a collection of SAS

®
 procedures. Before invoking the 

SAS
®
 procedure, the SASMOD setup file must include the definition of three variables: a stratum 

variable (here, the variable that identifies to which of the 18 strata (Table 1) each observation 
belongs); a weight variable (here, the (rescaled) weight variable available in the data file); and a 
cluster variable (here, as no Primary Sampling Unit (PSU) variable is available, we use a pseudo 
variable with a different value between 1 and 5,159 for each observation). Then the SASMOD module 

computes the variance estimates using a variant of the jackknife method in (9) based upon HU −  

(here 5,141) replicate estimates, where H  denotes the number of strata and U  the total number of 

PSUs (personal communication from T. E. Raghunathan, 2006). For either the initial model or the final 
model estimated on our data, SASMOD computations take about 50 minutes with an Intel

®
 Pentium

®
 IV 

2.2 GHz processor. 
To estimate the true variance of the CE point estimator, we implemented the jackknife method in (9) 
by nesting the GENMOD procedures in a loop in SAS

®
. We also applied this method to each of the 

other point estimators and found that with the PML estimator we obtained exactly the same results as 
with SASMOD. 
 

7.4. Comparison of Parameter Estimates and Standard Errors 
 
Table 4 presents parameter estimates and standard errors obtained for the initial and final models 
under all four approaches. We consider the point estimates first. The estimates obtained by applying 
the standard ML approach to the weighted rescaled table are identical to those from the PML 
approach as expected. Thus, there are really just three sets of point estimates to compare. The most 
marked differences are between the unweighted estimates and the other two (PML and CE) estimates. 
As discussed in section 6.2, both the latter estimators will be approximately unbiased if the model is 
true. We cannot be certain that either of the models is true but it seems reasonable to view the 
differences between the unweighted estimates and the other two estimates as evidence of bias in the 
former procedure (cf. Clogg and Eliason (1987, p.22)). This bias is especially pronounced in the case 

of the jγ  parameters and this may be attributed to the strong correlation between the column variable 

(women’s socio-economic class in 1985) and one of the stratifying variables (women’s socio-economic 
class at the census) upon which the sampling is differential. The PML and CE estimates are broadly 



similar and should not lead to any difference in substantive interpretation for either model. Leaving 
aside consideration of the standard errors, there seems no strong reason to prefer one set of 
estimates to the other. One possible argument in favour of the PML estimator, following Patterson et 
al. (2002) and mentioned in section 6.2, is that the PML estimator is ‘estimating’ a well-defined 
population quantity if the model is false, whereas the CE estimator is then estimating a quantity 
dependent on the arbitrariness of the sampling scheme. 
 

Table 4 – Comparison of parameter estimates and standard errors (in parentheses) 

Initial model Final model 

Parameter 
Unweighted 

Weighted 
rescaled 

Clogg & 
Eliason 

Pseudo 
maximum 
likelihood 

Unweighted 
Weighted 
rescaled 

Clogg & 
Eliason 

Pseudo 
maximum 
likelihood 

1β  (se) 
-1.813 
(0.087) 

-1.825 
(0.086) 

-1.828 
(0.086) 

-1.825 
(0.098) 

-1.747 
(0.084) 

-1.754 
(0.083) 

-1.763 
(0.083) 

-1.754 
(0.093) 

2β  (se) 
-2.626 
(0.107) 

-2.621 
(0.108) 

-2.612 
(0.106) 

-2.621 
(0.133) 

-2.663 
(0.102) 

-2.610 
(0.105) 

-2.632 
(0.102) 

-2.610 
(0.125) 

3β  (se) 
-1.532 
(0.079) 

-1.559 
(0.078) 

-1.549 
(0.079) 

-1.559 
(0.090) 

-1.492 
(0.076) 

-1.517 
(0.075) 

-1.514 
(0.076) 

-1.517 
(0.085) 

4β  (se) 
-0.856 
(0.069) 

-0.857 
(0.067) 

-0.855 
(0.070) 

-0.857 
(0.079) 

-0.633 
(0.061) 

-0.614 
(0.059) 

-0.643 
(0.061) 

-0.614 
(0.068) 

5β  (se) 
-1.134 
(0.072) 

-1.104 
(0.072) 

-1.111 
(0.073) 

-1.104 
(0.082) 

-1.036 
(0.067) 

-1.013 
(0.065) 

-1.021 
(0.067) 

-1.013 
(0.075) 

6β  (se) 
0.492 

(0.049) 
0.510 

(0.049) 
0.505 

(0.049) 
0.510 

(0.056) 
0.487 

(0.048) 
0.507 

(0.047) 
0.497 

(0.048) 
0.507 

(0.054) 

7β  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

1γ  (se) 
2.187 

(0.149) 
1.179 

(0.139) 
1.261 

(0.149) 
1.179 

(0.166) 
2.177 

(0.148) 
1.196 

(0.138) 
1.238 

(0.148) 
1.196 

(0.157) 

2γ  (se) 
0.585 

(0.169) 
-0.269 
(0.169) 

-0.182 
(0.170) 

-0.269 
(0.205) 

0.450 
(0.167) 

-0.373 
(0.167) 

-0.321 
(0.167) 

-0.373 
(0.198) 

3γ  (se) 
2.889 

(0.140) 
2.360 

(0.120) 
2.424 

(0.140) 
2.360 

(0.150) 
2.855 

(0.139) 
2.341 

(0.119) 
2.376 

(0.139) 
2.341 

(0.146) 

4γ  (se) 
1.473 

(0.147) 
1.508 

(0.124) 
1.555 

(0.148) 
1.508 

(0.156) 
1.204 

(0.147) 
1.253 

(0.124) 
1.282 

(0.147) 
1.253 

(0.153) 

5γ  (se) 
3.089 

(0.137) 
2.895 

(0.116) 
2.943 

(0.137) 
2.895 

(0.143) 
3.167 

(0.137) 
2.971 

(0.116) 
3.003 

(0.137) 
2.971 

(0.144) 

6γ  (se) 
1.605 

(0.146) 
1.297 

(0.126) 
1.349 

(0.146) 
1.297 

(0.150) 
1.638 

(0.146) 
1.340 

(0.126) 
1.370 

(0.146) 
1.340 

(0.150) 

7γ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Iδ  (se) 
3.561 

(0.163) 
3.451 

(0.146) 
3.569 

(0.163) 
3.451 

(0.189) 
4.163 

(0.228) 
4.096 

(0.266) 
4.138 

(0.228) 
4.096 

(0.252) 

IIδ  (se) 
2.730 

(0.119) 
2.619 

(0.147) 
2.660 

(0.118) 
2.619 

(0.135) 
3.215 

(0.191) 
3.104 

(0.251) 
3.123 

(0.191) 
3.104 

(0.214) 

IIIδ  (se) 
2.396 

(0.150) 
2.297 

(0.189) 
2.326 

(0.149) 
2.297 

(0.186) 
2.276 

(0.187) 
2.252 

(0.245) 
2.275 

(0.187) 
2.252 

(0.208) 

IVδ  (se) 
1.683 

(0.086) 
1.633 

(0.093) 
1.700 

(0.085) 
1.633 

(0.105) 
1.692 

(0.183) 
1.658 

(0.243) 
1.675 

(0.183) 
1.658 

(0.204) 

Vδ  (se) 
1.161 

(0.084) 
1.078 

(0.092) 
1.154 

(0.084) 
1.078 

(0.103) 
1.245 

(0.181) 
1.217 

(0.241) 
1.240 

(0.181) 
1.217 

(0.201) 

VIδ  (se) 
0.683 

(0.072) 
0.641 

(0.080) 
0.699 

(0.072) 
0.641 

(0.087) 
0.731 

(0.177) 
0.708 

(0.239) 
0.702 

(0.177) 
0.708 

(0.196) 

VIIδ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Deviance 86.11 77.12 75.58 - 47.71 33.69 34.77 - 
DF 29 29 29 - 29 29 29 - 

 
As regards standard errors in Table 4, only those for the PML estimator have been estimated in a way 
which takes appropriate account of the complex sampling. Since the weighted rescaled and the PML 
point estimators are identical, the differences between the standard errors for these two estimators 
demonstrate that the former method can often lead to seriously incorrect standard errors, as noted by 
Clogg and Eliason (1987, p.24). We have also calculated valid standard errors for the unweighted 
point estimators using the jackknife method and found that these too can differ from the values in 
Table 4, although the differences are more minor. We do not report or comment on these results 
further, however, since the unweighted point estimators show clear bias and so their standard errors 
are of little interest. 
Of much more importance to the theme of this paper are the standard errors for the CE approach. The 
standard errors of the CE point estimator obtained via a valid jackknife approach are compared in 
Table 5 with those obtained via the CE approach. We observe that the CE approach uniformly 



underestimates the standard errors. The jackknife value is often at least 10% higher and sometimes at 
least 20% higher. Our empirical investigation therefore illustrates how the CE variance estimator can 
systematically underestimate the true variability. Moreover, we observe in Table 4 that the standard 
errors obtained under the CE approach are virtually identical to those of the unweighted approach. 
Hence the device of including the offset term in the model seems to provide virtually no benefit in 
capturing the effect of unequal sampling weights on the standard error. 
 

Table 5 – Comparison of estimated standard errors for Clogg-Eliason estimator: 
Clogg-Eliason approach vs Jackknife method allowing for complex design 

 
Initial model Final model 

Parameter Clogg & 
Eliason 

Jackknife 
Clogg & 
Eliason 

Jackknife 

1β   0.086 0.102 0.083 0.096 

2β   0.106 0.130 0.102 0.122 

3β   0.079 0.090 0.076 0.086 

4β   0.070 0.078 0.061 0.068 

5β   0.073 0.081 0.067 0.074 

6β   0.049 0.055 0.048 0.054 

7β  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

1γ   0.149 0.158 0.148 0.155 

2γ   0.170 0.204 0.167 0.201 

3γ   0.140 0.144 0.139 0.143 

4γ   0.148 0.152 0.147 0.149 

5γ   0.137 0.140 0.137 0.141 

6γ   0.146 0.147 0.146 0.148 

7γ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

Iδ   0.163 0.181 0.228 0.253 

IIδ  0.118 0.139 0.191 0.218 

IIIδ  0.149 0.192 0.187 0.212 

IVδ  0.085 0.101 0.183 0.207 

Vδ   0.084 0.099 0.181 0.204 

VIδ   0.072 0.084 0.177 0.200 

VIIδ  Fixed at 0 Fixed at 0 Fixed at 0 Fixed at 0 

 
Finally, we compare the jackknife estimates for the CE estimator in Table 5 with the jackknife 
estimates for the PML estimator in Table 4. We observe that these are very similar. This is not 
surprising since the values of the point estimators were similar too. It implies that, at least for this 
application, there is no evidence of an efficiency advantage of the CE point estimator compared to the 
PML approach. 
 
 

8. Conclusions 
 
Clogg and Eliason (1987) proposed, amongst many other ideas, a simple method for handling survey 
weights in log-linear modelling. This method has continued to be cited. We have investigated the 
properties of this method using both statistical theory and an empirical study of social mobility using 
French survey data. Despite its simplicity, we recommend against the use of the method for the 
following reasons: 

• the standard errors produced by the method are invalid in general as a means of 
capturing the effect of weighting, contrary to claims in the literature. They are only valid in one or two 



very special cases. They generally underestimate the true standard errors. In our empirical study the 
method produced standard errors which were virtually identical to ignoring the survey weights entirely. 

• the standard errors produced by the method take no account of the effects of complex 
sampling other than weights. In the authors’ experience, there is a common misperception among 
survey data users that weights are the only aspect of complex sampling that need to be taken account 
of in data analyses, whereas for most social surveys, multi-stage sampling has a much greater impact 
than weighting on standard errors. 

• the method does correct for bias in point estimation but we see no clear advantages of 
this approach compared to the equally simple approach of fitting a model to a weighted table. 

• we are not aware of any rigorous theoretical justification of claims in the literature (e.g. 
Vermunt and Magidson, 2007) that this method leads to valid model testing procedures in the 
presence of survey weights and, on the basis of the theoretical work in this paper, we do not find this 
plausible. 
We consider that the pseudo maximum likelihood (PML) approach overcomes these limitations of the 
method of Clogg and Eliason (1987). Although the PML method is not implemented in log-linear 
modelling procedures in all standard software packages, it is often feasible to employ replication 
variance estimation methods, such as the jackknife or the bootstrap, where the point estimates are 
repeatedly computed for different replicates to obtain valid standard errors. 
 
 

Appendix: Proofs of Results in Section 4 
 

Consider first the consistency of ˆ
CE

λ  which maximizes (7) or, alternatively, may be defined as the 

solution of the estimating equations: 

   [log ( )] / { exp( ) } 0k k k k k
L n x z xλ λ λ∂ ∂ = − =∑ , 

which may also be expressed as: 

   ˆ[ exp( )] 0k k k k k
N x z xλ− =∑  .     (A1) 

Consider the set-up of section 4.1, where
1

1

ˆ
H

k kh h
h

N n π −

=

= ∑ , and assume an asymptotic framework, 

where H and 1 2, ,...,
H

π π π  are fixed and the 1 2, ,...,
H

µ µ µ  each increase to infinity. In this 

framework, the ˆ /
k k

N µ  will each converge in probability to unity. Moreover, if the model in (2) is 

correct, so that exp( )
k k

xµ λ= , then ˆ / exp( )
k k

N x λ  will converge in probability to unity. It then 

follows from (A1) that, provided the design matrix is defined in a non-redundant way so that (in large 

samples) (A1) has a unique solution, ˆ
CE

λ  will be consistent for λ . 

Consider now the CE standard errors obtained from the information matrix based on (7), given by: 

   
2 2( ) [log ( )] / exp( ) 'k k k k k

J L x z x xλ λ λ λ= −∂ ∂ = ∑ . 

Hence the CE estimator of the variance covariance matrix of ˆ
CE

λ is: 

   
1ˆ ˆˆ ( ) ( )

CE CE CE
V Jλ λ −= .      (A2) 

When the model in (2) holds, we may write alternatively that ( ) 'k k k k k
J z x xλ µ= ∑  and in large 

samples: 

   ( ) ( ) 'k sk k k
J J x xλ λ µ= ∑�� .     (A3) 

The actual variance-covariance matrix of ˆ
CE

λ  may be obtained by linearization as follows. The first 

order Taylor expansion of ˆexp( )
k CE

x λ  around ˆ
CE

λ λ=  is: 

   ˆ ˆexp( ) exp( ) exp( ) ( )
k CE k k k CE

x x x xλ λ λ λ λ+ −� . 

Substituting into (A1) gives: 

   ˆˆ[ exp( ) exp( ) ( )] ' 0k k k k k CE k k
N x x x z xλ λ λ λ− − −∑ �  

or 

   
1ˆ ˆ{ exp( ) ' } [ exp( )] 'k kCE k k k k k k k k

x z x x N x z xλ λ λ λ−+ −∑ ∑�  



   
1 ˆ( ) [ exp( )] 'k k k k k

J N x z xλ λ λ−= + −∑ . 

Thus, in large samples, we may approximate the variance-covariance matrix of ˆ
CE

λ  by: 

   
1 ˆvar{ ( ) [ exp( )] '}k k k k k

J N x z xλ λ− −∑ ,    (A4) 

which is equivalent in large samples, using (A3), to: 

   
1 1ˆ( ) var{ ( )( / ) '} ( )k k k sk k k

J N x Jλ µ µ µ λ− −−∑� �  

   
1 2 1ˆ( ) { ( / ) var( ) ' } ( )k sk k k k k

J N x x Jλ µ µ λ− −= ∑� �  

Now 

   
2

1

ˆvar( ) var( )
H

k h kh
h

N nπ −

=

= ∑  
1

1

H

h kh
h

π µ−

=

= ∑ . 

So the (large sample) variance-covariance matrix of ˆ
CE

λ  can be expressed as: 

   
1 1 2 1( ) ( ) { ' } ( )k k sk k k

J J c x x Jλ λ µ λ− − −= + ∑� � � ,   (A5) 

where 
2 1 2 2 1 2

1 1 1 1 1

[ ( ) ] / [ ] / 1
H H H H H

k h kh h kh kh k h kh h kh k
h h h h h

c π µ π µ µ µ π µ π µ µ− −

= = = = =

= − = −∑ ∑ ∑ ∑ ∑ . (A6) 

Note that 
2 0
k

c ≥  from the Cauchy-Schwarz inequality. Hence the CE approach generally 

underestimates standard errors of any element of ˆ
CE

λ . The CE standard errors will only be 

appropriate if 0
k

c =  for each k that is if 
1

h kh h kh
π µ π µ−∝  which requires that the 

h
π  are constant, i.e. 

h
π π= . To show that 

k
c  is the coefficient of variation of the weights in cell k, let 

   
1

1
1 1

ˆ
H H

k k kh h kh k
h h

S N n π µ µ−

= =

= = =∑ ∑�  and 
2 1

2
1 1

H H

k kh h kh h
h h

S n π µ π− −

= =

= ∑ ∑� . 

The sample variance of the weights within cell k is then: 

   
2 1 2

2 1
1 1

/ ( / ) ( ) /( ) ( / )
H H

h hk k k k k kh h h kh kh h kh
h h

v S n S n µ π π µ µ π µ−

= =

= − −∑ ∑ ∑ ∑�  

and the squared coefficient of variation of the weights in cell k is: 

   
1 2

1 1 1

( )( ) /( ) 1
H H H

kh h h kh kh
h h h

µ π π µ µ−

= = =

−∑ ∑ ∑  

which is identical to 
2

k
c  in (A6). 
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